pnorm(-0.4)
[1] 0.3445783
We say that a real-valued random variable (RV) X is normally distributed with mean \mu and standard deviation \sigma if its probability density function (PDF) is: f(x) = \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - \mu)^{2}}{2 \sigma^{2}}} and we usually write X \sim \mathcal{N}(\mu, \sigma^{2}). The parameters \mu and \sigma are related to the first and second moments of X.
The parameter \mu is the mean or expectation of X while \sigma denote its standard deviation. The variance of X is given by \sigma^{2}.
Let X = \mu + \sigma Z where Z \sim \mathcal{N}(0, 1). Start by defining f(z) = e^{-\frac{1}{2} z^{2}}, which implies that f^{\prime}(z) = -z e^{-\frac{1}{2} z^{2}} and f^{\prime \prime}(x) = z^{2} e^{-\frac{1}{2} z^{2}} - e^{-\frac{1}{2} z^{2}}. We can then write: \begin{aligned} z e^{-\frac{1}{2} z^{2}} & = -f^{\prime}(z) \\ z^{2} e^{-\frac{1}{2} z^{2}} & = f^{\prime \prime}(x) + f(z) \end{aligned}
Then, \begin{aligned} \operatorname{E}(Z) & = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} z e^{-\frac{1}{2} z^{2}} \, dz \\ & = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} -f^{\prime}(z) \, dz\\ & = \frac{1}{\sqrt{2 \pi}} \left( \left. -f(z) \vphantom{-e^{-\frac{1}{2} z^{2}}} \right|_{-\infty}^{\infty} \right) \\ & = 0, \\ \operatorname{E}(Z^{2}) & = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} z^{2} e^{-\frac{1}{2} z^{2}} \, dz \\ & = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime \prime}(x) + f(z) \, dz \\ & = \frac{1}{\sqrt{2 \pi}} \left( \left. f^{\prime}(z) \vphantom{-z e^{-\frac{1}{2} z^{2}}} \right|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} f(z) \, dz \right) \\ & = \frac{1}{\sqrt{2 \pi}} (0 + \sqrt{2 \pi}) \\ & = 1, \\ \operatorname{Var}(Z) & = \operatorname{E}(Z^{2}) - \operatorname{E}(Z)^{2} \\ & = 1. \end{aligned} Note that we used the fact that \int_{-\infty}^{\infty} f(z) \, dz = \sqrt{2 \pi}.
We can now compute \operatorname{E}(X) = \mu + \sigma \operatorname{E}(Z) = \mu and \operatorname{Var}(X) = \sigma^{2} \operatorname{Var}(Z) = \sigma^{2}.As with any real-valued random variable X, in order to compute the probability that X \leq x we need to integrate the density function from -\infty to x \colon \operatorname{P}(X \leq x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(u - \mu)^{2}}{2 \sigma^{2}}} du.
The function F(x) = \operatorname{P}(X \leq x) is called the cumulative distribution function of X. The Leibniz integral rule implies that F^{\prime}(x) = f(x).
An important case of normally distributed random variables is when \mu = 0 and \sigma = 1. In this case we say that Z \sim \mathcal{N}(0, 1) has the standard normal distribution and its cumulative distribution function is usually denoted by the capital Greek letter \Phi (phi), and is defined by the integral: \mathop{\Phi}(z) = \operatorname{P}(Z \leq z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \, dx.
Since the integral cannot be solved in closed-form, the probability must then be obtained from a table or using a computer. For example, in R we can compute \mathop{\Phi}(-0.4) by typing the following:
If you prefer to use Excel, you need to type in a cell =norm.s.dist(-0.4,TRUE)
, which yields the same answer.
Knowing how to compute or approximate \mathop{\Phi}(z) allows us to compute \operatorname{P}(X \leq x) when X \sim \mathcal{N}(\mu, \sigma^{2}) since Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) \colon \begin{aligned} \operatorname{P}(X \leq x) & = \operatorname{P}\left( \frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma} \right) \\ & = \operatorname{P}\left( Z \leq \frac{x - \mu}{\sigma} \right) \\ & = \mathop{\Phi}\left(\frac{x - \mu}{\sigma}\right) \end{aligned} where Z = \dfrac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) is called a Z-score.
Example 1 Suppose that X \sim \mathcal{N}(\mu, \sigma^{2}) with \mu = 10 and \sigma = 25. What is the probability that X \leq 0? \begin{aligned} \operatorname{P}(X \leq 0) & = \operatorname{P}\left( Z \leq \tfrac{0 - 10}{25} \right) \\ & = \mathop{\Phi}(-0.40) \\ & = 0.3446. \end{aligned}
For a random variable X, the right-tail probability is defined as \operatorname{P}(X > x). Since \operatorname{P}(X \leq x) + \operatorname{P}(X > x) = 1, we have that: \operatorname{P}(X > x) = 1 - \operatorname{P}(X \leq x).
Example 2 Suppose that X \sim \mathcal{N}(\mu, \sigma^{2}) with \mu = 10 and \sigma = 25. What is the probability that X > 12? \begin{aligned} \operatorname{P}(X \leq 12) & = \operatorname{P}\left( Z \leq \tfrac{12 - 10}{25} \right) \\ & = \mathop{\Phi}(0.08) \\ & = 0.5319. \end{aligned} Therefore, \operatorname{P}(X > 12) = 1 - 0.5319 = 0.4681.
The probability that a random variable X falls within an interval (X_{1}, X_{2}] is given by \operatorname{P}(x_{1} < X \leq x_{2}) = \operatorname{P}(X \leq x_{2}) - \operatorname{P}(X \leq x_{1}).
Example 3 Suppose that X \sim \mathcal{N}(\mu, \sigma^{2}) with \mu = 10 and \sigma = 25. What is the probability that 2 < X \leq 14? \begin{aligned} \operatorname{P}(X \leq 14) & = \operatorname{P}\left( Z \leq \tfrac{14 - 10}{25} \right) \\ & = \mathop{\Phi}(0.16) \\ & = 0.5636, \\ \operatorname{P}(X \leq 2) & = \operatorname{P}\left( Z \leq \tfrac{2 - 10}{25} \right) \\ & = \mathop{\Phi}(-0.32) \\ & = 0.3745. \end{aligned} Therefore, \operatorname{P}(2 < X \leq 14) = 0.5636 - 0.3745 = 0.1891.
If X \sim \mathcal{N}(\mu, \sigma^{2}), then Y = e^{X} is said to be lognormally distributed with the same parameters. The pdf of a lognormally distributed random variable Y can be obtained from the pdf of X.
If Y is lognormally distributed with parameters \mu and \sigma^{2}, the PDF of Y is given by: f(y) = \frac{1}{y \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln(y) - \mu)^{2}}{2 \sigma^{2}}}.
Let Y = e^{X} where X = \mu + \sigma Z and Z \sim \mathcal{N}(0, 1). Then, \begin{aligned} \operatorname{P}(Y \leq y) & = \operatorname{P}(X \leq \ln(y)) \\ & = \int_{-\infty}^{\ln(y)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - \mu)^{2}}{2 \sigma^{2}}} \, dx. \end{aligned}
Let’s define z = e^{x}. This implies that x = \ln(z), which in turn implies that dx = (1 / z) dz. Therefore, \operatorname{P}(Y \leq y) = \int_{-\infty}^{y} \frac{1}{z \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln(z) - \mu)^{2}}{2 \sigma^{2}}} \, dz.
Thus, the integrand of the previous expression is the probability density function of Y.Unlike the normal density, the lognormal density function is not symmetric around its mean. Normally distributed variables can take values in (-\infty, \infty), whereas lognormally distributed variables are always positive.
We can use the fact that the logarithm of a lognormal random variable is normally distributed to compute cumulative probabilities.
Example 4 Let Y = e^{4 + 1.5 Z} where Z \sim \mathcal{N}(0, 1). What is the probability that Y \leq 100? \begin{aligned} \operatorname{P}(Y \leq 100) & = \operatorname{P}(e^{X} \leq 100) \\ & = \operatorname{P}(X \leq \ln(100)) \\ & = \operatorname{P}\left(Z \leq \tfrac{\ln(100) - 4}{1.5}\right) \\ & = \mathop{\Phi}(0.4034) \\ & = 0.6567 \end{aligned} Therefore, there is a 65.67% chance that Y is less than or equal 100.
Let Y = e^{\mu + \sigma Z} where Z \sim \mathcal{N}(0, 1). We have that: \begin{aligned} \operatorname{E}(Y) & = e^{\mu + 0.5 \sigma^{2}} \\ \operatorname{Var}(Y) & = e^{2\mu + \sigma^{2}} (e^{\sigma^{2}} - 1) \\ \operatorname{SD}(Y) & = \operatorname{E}(Y) \sqrt{e^{\sigma^{2}} - 1} \end{aligned}
\begin{aligned} \operatorname{E}(Y) & = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - \mu)^{2}}{2 \sigma^{2}}} e^{x} \, dx \\ & = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - \mu)^{2}}{2 \sigma^{2}} + x} \, dx \\ & = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - (\mu + \sigma^{2}))^{2}}{2\sigma^{2}} + (\mu + 0.5 \sigma^{2})} \, dx \\ & = e^{\mu + 0.5 \sigma^{2}} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - (\mu + \sigma^{2}))^{2}}{2\sigma^{2}}} \, dx}_{= 1} \\ & = e^{\mu + 0.5 \sigma^{2}} \end{aligned} Using the fact that \alpha X \sim \mathcal{N}(\alpha \mu, (\alpha \sigma)^{2}), it is also possible to compute the expectation of powers of lognormally distributed variables: \operatorname{E}(Y^{\alpha}) = \operatorname{E}(e^{\alpha X}) = e^{\alpha \mu + 0.5 (\alpha \sigma)^{2}}.
This is useful to compute the variance and standard deviation of Y: \begin{aligned} \operatorname{Var}(Y) & = \operatorname{E}(Y^{2}) - \left(\operatorname{E}(Y)\right)^{2} \\ & = e^{2\mu + 2 \sigma^{2}} - e^{2\mu + \sigma^{2}} \\ & = e^{2\mu + \sigma^{2}} (e^{\sigma^{2}} - 1) \\ \operatorname{SD}(Y) & = \sqrt{\operatorname{Var}(Y)} \\ & = \operatorname{E}(Y) \sqrt{e^{\sigma^{2}} - 1} \end{aligned}Example 5 Let Y = e^{4 + 1.5 Z} where Z \sim \mathcal{N}(0, 1). The expectation and standard deviation of Y are: \begin{aligned} \operatorname{E}(Y) & = e^{4 + 0.5(1.5^{2})} = 168.17 \\ \operatorname{SD}(Y) & = 168.17 \sqrt{e^{1.5^{2}} - 1} = 489.95 \end{aligned}
For a standard normal variable Z, a right-tail percentile is the value z_{\alpha} above which we obtain a certain probability \alpha. Mathematically, this means finding z_{\alpha} such that: \operatorname{P}(Z > z_{\alpha}) = \alpha \Leftrightarrow \operatorname{P}(Z \leq z_{\alpha}) = 1 - \alpha.
This implies that \mathop{\Phi}(z_{\alpha}) = 1 - \alpha, or z_{\alpha} = \mathop{\Phi}^{-1}(1 - \alpha), where \mathop{\Phi}^{-1}(\cdot) denotes the inverse function of \mathop{\Phi}(\cdot). Again, there is no closed-form expression for this function and we need a computer to obtain the values. For example, say that \alpha = 0.025. In R we could compute z_{\alpha} = \mathop{\Phi}^{-1}(0.975) by using the function qnorm
as follows:
In Excel the function =norm.s.inv(0.975)
provides the same result.
The following table shows common values for z_{\alpha}:
\boldsymbol{\alpha} | \boldsymbol{z_{\alpha}} |
---|---|
0.050 | 1.64 |
0.025 | 1.96 |
0.010 | 2.33 |
0.005 | 2.58 |
A (1 - \alpha) two-sided confidence interval (CI) defines left and right percentiles such that the probability on each side is \alpha/2. For a standard normal variable Z, the symmetry of its pdf implies: \operatorname{P}(Z \leq -z_{\alpha/2}) = \operatorname{P}(Z > z_{\alpha/2}) = \alpha/2
Example 6 Since z_{2.5\%} = 1.96, the 95% confidence interval of Z is [-1.96, 1.96]. This means that if we randomly sample this variable 100,000 times, approximately 95,000 observations will fall inside this interval.
If X \sim \mathcal{N}(\mu, \sigma^{2}), its confidence interval is determined by \xi and \zeta such that: \begin{aligned} & \operatorname{P}(X \leq \xi) = \alpha / 2 \\ & \hspace{0.3in} \Rightarrow \operatorname{P}(Z \leq \tfrac{\xi - \mu}{\sigma}) = \alpha/2, \\ & \operatorname{P}(X > \zeta) = \alpha / 2 \\ & \hspace{0.3in} \Rightarrow \operatorname{P}(Z > \tfrac{\zeta - \mu}{\sigma}) = \alpha/2, \end{aligned} which implies that -z_{\alpha/2} = \tfrac{\xi - \mu}{\sigma} and z_{\alpha/2} = \tfrac{\zeta - \mu}{\sigma}.The (1 - \alpha) confidence interval for X is then [\mu - z_{\alpha/2}\sigma, \mu + z_{\alpha/2}\sigma].
Example 7 Suppose that X \sim \mathcal{N}(\mu, \sigma^{2}) with \mu = 10 and \sigma = 25. Since z_{2.5\%} = 1.96, the 95% confidence interval of X is: [10-1.96(25), 10+1.96(25)] = [-39, 59].
We could also apply the same priciple for a lognormal random variable. Let Y = e^{\mu + \sigma Z} where Z \sim \mathcal{N}(0, 1). We then have that \begin{aligned} & -z_{\alpha/2} < Z \leq z_{\alpha/2} \\ & \hspace{0.4in} \Rightarrow \mu - \sigma z_{\alpha/2} < \mu + \sigma Z \leq \mu + \sigma z_{\alpha/2} \\ & \hspace{0.4in} \Rightarrow e^{\mu - \sigma z_{\alpha/2}} < e^{\mu + \sigma Z} \leq e^{\mu + \sigma z_{\alpha/2}} \end{aligned} The (1 - \alpha) confidence interval for Y (centered araound the mean of \ln(Y)) is [e^{\mu - \sigma z_{\alpha/2}}, e^{\mu + \sigma z_{\alpha/2}}].
Example 8 Let Y = e^{4 + 1.5 Z} where Z \sim \mathcal{N}(0, 1). The 95% confidence interval for Y is: [e^{4 - 1.96(1.5)}, e^{4 + 1.96(1.5)}] = [2.89, 1032.71].
When pricing a call option, the payoff is positive if the option is in-the-money and zero otherwise. We usually use an indicator function to quantify this behavior: \large\mathbb{1}_{\{Y > K\}} = \begin{cases} 0 & \text{if $Y \leq K$} \\ 1 & \text{if $Y > K$} \end{cases}
Let Y = e^{X} where X \sim \mathcal{N}(\mu, \sigma^{2}). Then we have that: \begin{aligned} \operatorname{E}\left(Y \large\mathbb{1}_{\{Y > K\}}\right) & = e^{\mu + \frac{1}{2}\sigma^{2}} \mathop{\Phi}\left(\frac{\mu + \sigma^{2} - \ln(K)}{\sigma}\right) \\ \operatorname{E}\left(K \large\mathbb{1}_{\{Y > K\}}\right) & = K \mathop{\Phi}\left(\frac{\mu - \ln(K)}{\sigma}\right) \end{aligned}
The first expectation can be computed as: \begin{aligned} \operatorname{E}\left(Y \large\mathbb{1}_{\{Y > K\}}\right) & = \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - \mu)^{2}}{2 \sigma^{2}}} e^{x} \, dx \\ & = \int_{-\infty}^{-\ln(K)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y + \mu)^{2}}{2 \sigma^{2}}} e^{-y} \, dy \\ & = \int_{-\infty}^{-\ln(K)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y + \mu)^{2}}{2 \sigma^{2}} - y} \, dy \\ & = \int_{-\infty}^{-\ln(K)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y + (\mu + \sigma^{2}))^{2}}{2\sigma^{2}} + (\mu + 0.5 \sigma^{2})} \, dy \\ & = e^{\mu + 0.5 \sigma^{2}} \int_{-\infty}^{-\ln(K)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y + (\mu + \sigma^{2}))^{2}}{2\sigma^{2}}} \, dy \\ & = e^{\mu + 0.5 \sigma^{2}} \mathop{\Phi}\left(\tfrac{\mu + \sigma^{2} - \ln(K)}{\sigma}\right) \end{aligned}
The second expectation yields: \begin{aligned} \operatorname{E}\left(K \large\mathbb{1}_{\{Y > K\}}\right) & = K \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x - \mu)^{2}}{2 \sigma^{2}}} \, dx \\ & = K \int_{-\infty}^{-\ln(K)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y + \mu)^{2}}{2 \sigma^{2}}} \, dy \\ & = K \mathop{\Phi}\left(\tfrac{\mu - \ln(K)}{\sigma}\right) \end{aligned}Problem 1 Suppose that X is a normally distributed random variable with mean \mu=12 and standard deviation \sigma=20.
\operatorname{P}(X \leq 0) = \mathop{\Phi}(\frac{0-12}{20})
\hphantom{\operatorname{P}(X \leq 0)} = \mathop{\Phi}(-0.60)
\hphantom{\operatorname{P}(X \leq 0)} = 0.2743.
\operatorname{P}(X \leq -4) = \mathop{\Phi}(\frac{-4-12}{20})
\hphantom{\operatorname{P}(X \leq -4)} = \mathop{\Phi}(-0.80)
\hphantom{\operatorname{P}(X \leq -4)} = 0.2119.
\operatorname{P}(X > 8) = 1 - \operatorname{P}(X \leq 8)
\hphantom{\operatorname{P}(X > 8)} = 1 - \mathop{\Phi}(\frac{8-12}{20})
\hphantom{\operatorname{P}(X > 8)} = 1 - \mathop{\Phi}(-0.20)
\hphantom{\operatorname{P}(X > 8)} = 0.5793.
\operatorname{P}(4 < X \leq 10) = \operatorname{P}(X \leq 10) - \operatorname{P}(X \leq 4)
\hphantom{\operatorname{P}(4 < X \leq 10)} = \mathop{\Phi}(\frac{10-12}{20}) - \mathop{\Phi}(\frac{4-12}{20})
\hphantom{\operatorname{P}(4 < X \leq 10)} = \mathop{\Phi}(-0.10) - \mathop{\Phi}(-0.40)
\hphantom{\operatorname{P}(4 < X \leq 10)} = 0.1156.
Problem 2 Suppose that X is a normally distributed random variable with mean \mu=10 and standard deviation \sigma=20. Compute the 90%, 95%, and 99% confidence interval for X.
The (1-\alpha) confidence interval (CI) for X is given by [\mu - z_{\alpha/2} \sigma, \mu + z_{\alpha/2} \sigma] where z_{\alpha/2} = \mathop{\Phi}^{-1}(1-\alpha/2). For example, if you want to compute the z-level corresponding to the 90% confidence interval, then \alpha = 0.10 and \alpha/2 = 0.05, so to compute z_{0.05} you need to type in Excel =norm.s.inv(0.95)
.
Problem 3 Suppose that X=\ln(Y) is a normally distributed random variable with mean \mu=3.9 and standard deviation \sigma=15.
\operatorname{P}(Y \leq 6) = \operatorname{P}(X \leq \ln(Y))
\hphantom{\operatorname{P}(Y \leq 6)} = \mathop{\Phi}(\frac{\ln(6)-3.9}{15})
\hphantom{\operatorname{P}(Y \leq 6)} = \mathop{\Phi}(-0.1405)
\hphantom{\operatorname{P}(Y \leq 6)} = 0.4441
\operatorname{P}(Y > 4) = 1 - \operatorname{P}(Y \leq 4)
\hphantom{\operatorname{P}(Y > 4)} = 1 - \operatorname{P}(X \leq \ln(4))
\hphantom{\operatorname{P}(Y > 4)} = 1 - \mathop{\Phi}(\frac{\ln(4)-3.9}{15})
\hphantom{\operatorname{P}(Y > 4)} = 1 - \mathop{\Phi}(-0.1676)
\hphantom{\operatorname{P}(Y > 4)} = 0.5665
\operatorname{P}(3 < Y \leq 12) = \operatorname{P}(Y \leq 12) - \operatorname{P}(Y \leq 3)
\hphantom{\operatorname{P}(3 < Y \leq 12)} = \mathop{\Phi}(\frac{\ln(12)-3.9}{15}) - \mathop{\Phi}(\frac{\ln(3)-3.9}{15})
\hphantom{\operatorname{P}(3 < Y \leq 12)} = \mathop{\Phi}(-0.0943) - \mathop{\Phi}(-1868)
\hphantom{\operatorname{P}(3 < Y \leq 12)} = 0.4624 - 0.4259
\hphantom{\operatorname{P}(3 < Y \leq 12)} = 0.0365
\operatorname{P}(Y \leq 0) = \operatorname{P}(X \leq -\infty) = 0
Problem 4 Suppose that X is a normally distributed variable with mean \mu=3.70 and standard deviation \sigma=0.80. If Y=e^{X}, what is the probability that Y is greater than 45?
These problems are not required to study for the exam, but can give you some good practice handling mathematical concepts discussed in the notes.
Problem 5 Suppose that X=\ln(Y) is a normally distributed random variable with mean \mu=2.7 and standard deviation \sigma=1. Compute the 90%, 95%, and 99% confidence interval for X and report the corresponding values for Y.
The (1 - \alpha) confidence interval (CI) for X is given by [\mu - z_{\alpha/2} \sigma, \mu + z_{\alpha/2} \sigma]. Remember that to compute z_{\alpha/2} we use in Excel =norm.s.inv(1-alpha/2)
. The corresponding interval for Y is then [e^{\mu - z_{\alpha/2} \sigma}, e^{\mu + z_{\alpha/2} \sigma}].
Problem 6 Let Y = e^{\mu + \sigma Z} where \mu = 1, \sigma = 2 and Z \sim \mathcal{N}(0, 1). Compute:
In some of the questions we use the fact that if X \sim \mathcal{N}(\mu, \sigma^{2}), then \alpha X \sim \mathcal{N}(\alpha\mu, \alpha^{2}\sigma^{2}), which implies that \operatorname{E}(Y^{\alpha}) = \operatorname{E}(e^{\alpha X}) = e^{\alpha\mu+\frac{1}{2}\alpha^{2}\sigma^{2}}.