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The Lognormal Distribution

The Normal Distribution

Wesay that a real-valued randomvariable (RV)𝑋 is normally distributedwithmean𝜇 and
standard deviation 𝜎 if its probability density function (PDF) is:

𝑓(𝑥) = 1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2
2𝜎2

and we usually write 𝑋 ∼ 𝒩(𝜇, 𝜎2). The parameters 𝜇 and 𝜎 are related to the first and
secondmoments of 𝑋.
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Figure 1: The figure shows the density function of a normally distributed random variable with
mean 𝜇 and standard deviation 𝜎.
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Moments of the Normal Distribution

The parameter 𝜇 is the mean or expectation of 𝑋 while 𝜎 denote its standard devia-
tion. The variance of 𝑋 is given by 𝜎2.

Proof

Let 𝑋 = 𝜇 + 𝜎𝑍 where 𝑍 ∼ 𝒩(0, 1). Start by defining 𝑓(𝑧) = 𝑒−
1
2𝑧

2 , which implies that
𝑓′(𝑧) = −𝑧𝑒−

1
2𝑧

2
and 𝑓′′(𝑥) = 𝑧2𝑒−

1
2𝑧

2 − 𝑒−
1
2𝑧

2 .We can then write:

𝑧𝑒−
1
2𝑧

2 = −𝑓′(𝑧)

𝑧2𝑒−
1
2𝑧

2 = 𝑓′′(𝑥) + 𝑓(𝑧)

Then,

E(𝑍) = න
∞

−∞

1
√2𝜋

𝑧𝑒−
1
2𝑧

2 𝑑𝑧

= 1
√2𝜋

න
∞

−∞
−𝑓′(𝑧) 𝑑𝑧

= 1
√2𝜋

ቆ−𝑓(𝑧)ฬ
∞

−∞
ቇ

= 0,

E(𝑍2) = න
∞

−∞

1
√2𝜋

𝑧2𝑒−
1
2𝑧

2 𝑑𝑧

= 1
√2𝜋

න
∞

−∞
𝑓′′(𝑥) + 𝑓(𝑧) 𝑑𝑧

= 1
√2𝜋

ቆ𝑓′(𝑧)ฬ
∞

−∞
+න

∞

−∞
𝑓(𝑧) 𝑑𝑧ቇ

= 1
√2𝜋

(0 + √2𝜋)

= 1,
Var(𝑍) = E(𝑍2) − E(𝑍)2

= 1.
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Note that we used the fact that

න
∞

−∞
𝑓(𝑧) 𝑑𝑧 = √2𝜋.

We can now compute E(𝑋) = 𝜇 + 𝜎 E(𝑍) = 𝜇 and Var(𝑋) = 𝜎2 Var(𝑍) = 𝜎2.

Aswith any real-valued randomvariable𝑋, in order to compute theprobability that𝑋 ≤ 𝑥
we need to integrate the density function from−∞ to 𝑥 ∶

P(𝑋 ≤ 𝑥) = න
𝑥

−∞

1
√2𝜋𝜎2

𝑒−
(𝑢−𝜇)2
2𝜎2 𝑑𝑢.

The function 𝐹(𝑥) = P(𝑋 ≤ 𝑥) is called the cumulative distribution function of 𝑋. The
Leibniz integral rule implies that 𝐹′(𝑥) = 𝑓(𝑥).

The Standard Normal Distribution

An important case of normally distributed random variables is when 𝜇 = 0 and𝜎 = 1. In
this case we say that 𝑍 ∼ 𝒩(0, 1) has the standard normal distribution and its cumulative
distribution function is usually denoted by the capital Greek letterΦ (phi), and is defined
by the integral:

Φ(𝑧) = P(𝑍 ≤ 𝑧) = න
𝑧

−∞

1
√2𝜋

𝑒−
𝑥2
2 𝑑𝑥.

Since the integral cannotbesolved inclosed-form, theprobabilitymust thenbeobtained
from a table or using a computer. For example, in R we can computeΦ(−0.4) by typing
the following:

pnorm(-0.4)

[1] 0.3445783

If you prefer to use Excel, you need to type in a cell =norm.s.dist(-0.4,TRUE), which
yields the same answer.
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Figure 2: The blue shaded area representsΦ(𝑧).

Left-Tail Probability

Knowing how to compute or approximate Φ(𝑧) allows us to compute P(𝑋 ≤ 𝑥) when
𝑋 ∼ 𝒩(𝜇, 𝜎2) since 𝑍 = 𝑋−𝜇

𝜎 ∼ 𝒩(0, 1)∶

P(𝑋 ≤ 𝑥) = Pቆ𝑋 − 𝜇
𝜎 ≤ 𝑥 − 𝜇

𝜎 ቇ

= P ൬𝑍 ≤ 𝑥 − 𝜇
𝜎 ൰

= Φ൬𝑥 − 𝜇
𝜎 ൰

where 𝑍 = 𝑋 − 𝜇
𝜎 ∼ 𝒩(0, 1) is called a Z-score.

Example 1. Suppose that𝑋 ∼ 𝒩(𝜇, 𝜎2)with𝜇 = 10 and𝜎 = 25.What is the probability
that 𝑋 ≤ 0?

P(𝑋 ≤ 0) = P ቀ𝑍 ≤ 0−10
25 ቁ

= Φ(−0.40)
= 0.3446.
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Right-Tail Probability

For a random variable 𝑋, the right-tail probability is defined as P(𝑋 > 𝑥). Since P(𝑋 ≤
𝑥) + P(𝑋 > 𝑥) = 1,we have that:

P(𝑋 > 𝑥) = 1 − P(𝑋 ≤ 𝑥).

x x

= −

Figure 3: The right-tail probability is the probability of thewhole distribution, which is one,minus
the left-tail probability.

Example2. Suppose that𝑋 ∼ 𝒩(𝜇, 𝜎2)with𝜇 = 10and𝜎 = 25. What is theprobability
that 𝑋 > 12?

P(𝑋 ≤ 12) = P ቀ𝑍 ≤ 12−10
25 ቁ

= Φ(0.08)
= 0.5319.

Therefore, P(𝑋 > 12) = 1 − 0.5319 = 0.4681.

Interval Probability

Theprobability that a randomvariable𝑋 fallswithin an interval (𝑋1, 𝑋2] is givenbyP(𝑥1 <
𝑋 ≤ 𝑥2) = P(𝑋 ≤ 𝑥2) − P(𝑋 ≤ 𝑥1).
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x1 x2 x2 x1

= −

Figure 4: If you subtract the area to the left of 𝑥1 to the area that is to the left of 𝑥2 you obtain the
probability of 𝑥1 < 𝑋 ≤ 𝑥2.

Example3. Suppose that𝑋 ∼ 𝒩(𝜇, 𝜎2)with𝜇 = 10and𝜎 = 25. What is theprobability
that 2 < 𝑋 ≤ 14?

P(𝑋 ≤ 14) = P ቀ𝑍 ≤ 14−10
25 ቁ

= Φ(0.16)
= 0.5636,

P(𝑋 ≤ 2) = P ቀ𝑍 ≤ 2−10
25 ቁ

= Φ(−0.32)
= 0.3745.

Therefore, P(2 < 𝑋 ≤ 14) = 0.5636 − 0.3745 = 0.1891.

The Lognormal Distribution

If 𝑋 ∼ 𝒩(𝜇, 𝜎2), then 𝑌 = 𝑒𝑋 is said to be lognormally distributed with the same param-
eters. The pdf of a lognormally distributed random variable 𝑌 can be obtained from the
pdf of 𝑋.

Lognormal Density

If 𝑌 is lognormally distributed with parameters 𝜇 and 𝜎2, the PDF of 𝑌 is given by:

𝑓(𝑦) = 1
𝑦√2𝜋𝜎2

𝑒−
(ln(𝑦)−𝜇)2

2𝜎2 .

6



µ

σ

x

Normal Density

0 y

Lognormal Density

Figure 5: The figure shows the difference between a normal and a lognormal PDF with the same
parameters.

Proof

Let 𝑌 = 𝑒𝑋 where 𝑋 = 𝜇 + 𝜎𝑍 and 𝑍 ∼ 𝒩(0, 1). Then,

P(𝑌 ≤ 𝑦) = P(𝑋 ≤ ln(𝑦))

= න
ln(𝑦)

−∞

1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2
2𝜎2 𝑑𝑥.

Let’s define 𝑧 = 𝑒𝑥. This implies that 𝑥 = ln(𝑧), which in turn implies that𝑑𝑥 = (1/𝑧)𝑑𝑧.
Therefore,

P(𝑌 ≤ 𝑦) = න
𝑦

−∞

1
𝑧√2𝜋𝜎2

𝑒−
(ln(𝑧)−𝜇)2

2𝜎2 𝑑𝑧.

Thus, the integrandof thepreviousexpression is theprobabilitydensity functionof𝑌.

Unlike the normal density, the lognormal density function is not symmetric around its
mean. Normally distributed variables can take values in (−∞,∞), whereas lognormally
distributed variables are always positive.
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Computing Probabilities

We can use the fact that the logarithm of a lognormal random variable is normally dis-
tributed to compute cumulative probabilities.

Example 4. Let 𝑌 = 𝑒4+1.5𝑍 where 𝑍 ∼ 𝒩(0, 1). What is the probability that 𝑌 ≤ 100?

P(𝑌 ≤ 100) = P(𝑒𝑋 ≤ 100)
= P(𝑋 ≤ ln(100))
= P ቀ𝑍 ≤ ln(100)−4

1.5 ቁ
= Φ(0.4034)
= 0.6567

Therefore, there is a 65.67% chance that 𝑌 is less than or equal 100.

Moments

Moments of a Lognormal Distribution

Let 𝑌 = 𝑒𝜇+𝜎𝑍 where 𝑍 ∼ 𝒩(0, 1). We have that:

E(𝑌) = 𝑒𝜇+0.5𝜎2

Var(𝑌) = 𝑒2𝜇+𝜎2(𝑒𝜎2 − 1)

SD(𝑌) = E(𝑌)ඥ𝑒𝜎2 − 1

Proof
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E(𝑌) = න
∞

−∞

1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2
2𝜎2 𝑒𝑥 𝑑𝑥

= න
∞

−∞

1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2
2𝜎2 +𝑥 𝑑𝑥

= න
∞

−∞

1
√2𝜋𝜎2

𝑒−
(𝑥−(𝜇+𝜎2))2

2𝜎2 +(𝜇+0.5𝜎2) 𝑑𝑥

= 𝑒𝜇+0.5𝜎2 න
∞

−∞

1
√2𝜋𝜎2

𝑒−
(𝑥−(𝜇+𝜎2))2

2𝜎2 𝑑𝑥
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

=1

= 𝑒𝜇+0.5𝜎2

Using the fact that 𝛼𝑋 ∼ 𝒩(𝛼𝜇, (𝛼𝜎)2), it is also possible to compute the expectation
of powers of lognormally distributed variables:

E(𝑌𝛼) = E(𝑒𝛼𝑋) = 𝑒𝛼𝜇+0.5(𝛼𝜎)2 .

This is useful to compute the variance and standard deviation of 𝑌:

Var(𝑌) = E(𝑌2) − (E(𝑌))2

= 𝑒2𝜇+2𝜎2 − 𝑒2𝜇+𝜎2

= 𝑒2𝜇+𝜎2(𝑒𝜎2 − 1)
SD(𝑌) = ඥVar(𝑌)

= E(𝑌)ඥ𝑒𝜎2 − 1

Example5. Let𝑌 = 𝑒4+1.5𝑍where𝑍 ∼ 𝒩(0, 1). Theexpectationandstandarddeviation
of 𝑌 are:

E(𝑌) = 𝑒4+0.5(1.52) = 168.17

SD(𝑌) = 168.17ඥ𝑒1.52 − 1 = 489.95
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Appendix

Percentiles

For a standard normal variable 𝑍, a right-tail percentile is the value 𝑧𝛼 above which we
obtain a certain probability 𝛼.Mathematically, this means finding 𝑧𝛼 such that:

P(𝑍 > 𝑧𝛼) = 𝛼 ⇔ P(𝑍 ≤ 𝑧𝛼) = 1 − 𝛼.

0 zα

α

z

Figure 6: The right-tail percentile is the value 𝑧𝛼 that gives an area to the right equal to 𝛼.

This implies that Φ(𝑧𝛼) = 1 − 𝛼, or 𝑧𝛼 = Φ−1(1 − 𝛼), where Φ−1(⋅) denotes the in-
verse function of Φ(⋅). Again, there is no closed-form expression for this function and
we need a computer to obtain the values. For example, say that 𝛼 = 0.025. In R we
could compute 𝑧𝛼 = Φ−1(0.975) by using the function qnorm as follows:

qnorm(0.975)

[1] 1.959964

In Excel the function =norm.s.inv(0.975) provides the same result.
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The following table shows common values for 𝑧𝛼:

𝛼 𝑧𝛼
0.050 1.64
0.025 1.96
0.010 2.33
0.005 2.58

A (1−𝛼) two-sided confidence interval (CI) defines left and right percentiles such that the
probability on each side is 𝛼/2. For a standard normal variable 𝑍, the symmetry of its
pdf implies:

P(𝑍 ≤ −𝑧𝛼/2) = P(𝑍 > 𝑧𝛼/2) = 𝛼/2

−zα/2 0 zα/2

α/2α/2

z

Figure 7: The areas on each side are both equal to 𝛼/2.

Example 6. Since 𝑧2.5% = 1.96, the 95% confidence interval of 𝑍 is [−1.96, 1.96]. This
means that if we randomly sample this variable 100,000 times, approximately 95,000
observations will fall inside this interval.
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If 𝑋 ∼ 𝒩(𝜇, 𝜎2), its confidence interval is determined by 𝜉 and 𝜁 such that:

P(𝑋 ≤ 𝜉) = 𝛼/2
⇒ P(𝑍 ≤ 𝜉−𝜇

𝜎 ) = 𝛼/2,
P(𝑋 > 𝜁) = 𝛼/2

⇒ P(𝑍 > 𝜁−𝜇
𝜎 ) = 𝛼/2,

which implies that−𝑧𝛼/2 =
𝜉−𝜇
𝜎 and 𝑧𝛼/2 =

𝜁−𝜇
𝜎 .The (1 − 𝛼) confidence interval for𝑋 is

then [𝜇 − 𝑧𝛼/2𝜎, 𝜇 + 𝑧𝛼/2𝜎].

Example 7. Suppose that 𝑋 ∼ 𝒩(𝜇, 𝜎2) with 𝜇 = 10 and 𝜎 = 25. Since 𝑧2.5% = 1.96,
the 95% confidence interval of 𝑋 is:

[10 − 1.96(25), 10 + 1.96(25)] = [−39, 59].

We could also apply the same priciple for a lognormal random variable. Let 𝑌 = 𝑒𝜇+𝜎𝑍
where 𝑍 ∼ 𝒩(0, 1). We then have that

− 𝑧𝛼/2 < 𝑍 ≤ 𝑧𝛼/2
⇒ 𝜇 − 𝜎𝑧𝛼/2 < 𝜇 + 𝜎𝑍 ≤ 𝜇 + 𝜎𝑧𝛼/2
⇒ 𝑒𝜇−𝜎𝑧𝛼/2 < 𝑒𝜇+𝜎𝑍 ≤ 𝑒𝜇+𝜎𝑧𝛼/2

The (1 − 𝛼) confidence interval for 𝑌 (centered araound the mean of ln(𝑌)) is
[𝑒𝜇−𝜎𝑧𝛼/2 , 𝑒𝜇+𝜎𝑧𝛼/2].

Example 8. Let 𝑌 = 𝑒4+1.5𝑍 where 𝑍 ∼ 𝒩(0, 1). The 95% confidence interval for 𝑌 is:

[𝑒4−1.96(1.5), 𝑒4+1.96(1.5)] = [2.89, 1032.71].
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Partial Expectations

When pricing a call option, the payoff is positive if the option is in-the-money and zero
otherwise. We usually use an indicator function to quantify this behavior:

𝟙{𝑌>𝐾} = ൞
0 if 𝑌 ≤ 𝐾
1 if 𝑌 > 𝐾

Partial Expectations

Let 𝑌 = 𝑒𝑋 where 𝑋 ∼ 𝒩(𝜇, 𝜎2). Then we have that:

E ൫𝑌𝟙{𝑌>𝐾}൯ = 𝑒𝜇+
1
2𝜎

2
Φቆ𝜇 + 𝜎2 − ln(𝐾)

𝜎 ቇ

E ൫𝐾𝟙{𝑌>𝐾}൯ = 𝐾Φቆ𝜇 − ln(𝐾)
𝜎 ቇ

Proof

The first expectation can be computed as:

E ൫𝑌𝟙{𝑌>𝐾}൯ = න
∞

ln(𝐾)

1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2
2𝜎2 𝑒𝑥 𝑑𝑥

= න
− ln(𝐾)

−∞

1
√2𝜋𝜎2

𝑒−
(𝑦+𝜇)2
2𝜎2 𝑒−𝑦 𝑑𝑦

= න
− ln(𝐾)

−∞

1
√2𝜋𝜎2

𝑒−
(𝑦+𝜇)2
2𝜎2 −𝑦 𝑑𝑦

= න
− ln(𝐾)

−∞

1
√2𝜋𝜎2

𝑒−
(𝑦+(𝜇+𝜎2))2

2𝜎2 +(𝜇+0.5𝜎2) 𝑑𝑦

= 𝑒𝜇+0.5𝜎2 න
− ln(𝐾)

−∞

1
√2𝜋𝜎2

𝑒−
(𝑦+(𝜇+𝜎2))2

2𝜎2 𝑑𝑦

= 𝑒𝜇+0.5𝜎2 Φ൬𝜇+𝜎
2−ln(𝐾)
𝜎 ൰
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The second expectation yields:

E ൫𝐾𝟙{𝑌>𝐾}൯ = 𝐾න
∞

ln(𝐾)

1
√2𝜋𝜎2

𝑒−
(𝑥−𝜇)2
2𝜎2 𝑑𝑥

= 𝐾න
− ln(𝐾)

−∞

1
√2𝜋𝜎2

𝑒−
(𝑦+𝜇)2
2𝜎2 𝑑𝑦

= 𝐾Φቀ𝜇−ln(𝐾)𝜎 ቁ

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin451.

Problem1. Suppose that𝑋 is a normally distributed random variablewithmean 𝜇 = 12
and standard deviation 𝜎 = 20.

a. What is the probability that 𝑋 ≤ 0?
b. What is the probability that 𝑋 ≤ −4?
c. What is the probability that 𝑋 > 8?
d. What is the probability that 4 < 𝑋 ≤ 10?

Problem2. Suppose that𝑋 is a normally distributed random variablewithmean 𝜇 = 10
and standard deviation 𝜎 = 20. Compute the 90%, 95%, and 99% confidence interval
for 𝑋.

Problem3. Suppose that𝑋 = ln(𝑌) is anormallydistributed randomvariablewithmean
𝜇 = 3.9 and standard deviation 𝜎 = 15.

a. What is the probability that 𝑌 ≤ 6?
b. What is the probability that 𝑌 > 4?
c. What is the probability that 3 < 𝑌 ≤ 12?
d. What is the probability that 𝑌 ≤ 0?
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Problem 4. Suppose that 𝑋 is a normally distributed variable with mean 𝜇 = 3.70 and
standard deviation 𝜎 = 0.80. If 𝑌 = 𝑒𝑋,what is the probability that 𝑌 is greater than 45?

Optional Practice Problems

These problems are not required to study for the exam, but can give you some good prac-
tice handling mathematical concepts discussed in the notes.

Problem5. Suppose that𝑋 = ln(𝑌) is anormallydistributed randomvariablewithmean
𝜇 = 2.7 and standard deviation 𝜎 = 1. Compute the 90%, 95%, and 99% confidence
interval for 𝑋 and report the corresponding values for 𝑌.

Problem 6. Let 𝑌 = 𝑒𝜇+𝜎𝑍 where 𝜇 = 1, 𝜎 = 2 and 𝑍 ∼ 𝒩(0, 1). Compute:

a. E(𝑌)
b. SD(𝑌) = ඥE(𝑌2) − E(𝑌)2
c. E(𝑌0.3)
d. E(𝑌−1)
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