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Stochastic Calculus

Introduction

Let (Ω, ℱ,P) be a probability space. Remember thatΩ is the set of all the possible outcomes

andℱ contains all the events 𝐴 ⊂ Ω that we can assert if they happen or not.

In continuous time we define a stochastic process 𝑋𝑡(𝜔) as a collection of random variables

such that, given an outcome𝜔 ∈ Ω, we can determine the path of the stochastic process over

time. We can also think about the stochastic process in the opposite way. That is, for a given

time 𝑡 ≤ 𝑇, how does the random variable 𝑋𝑡(𝜔) behaves.

A filtration {𝐹𝑡} determines how information is disseminated as we observe a stochastic pro-

cess. At the very least, we want the filtration to remember what has happened before so that

ℱ𝑠 ⊂ ℱ𝑡 when 0 ≤ 𝑠 < 𝑡.

Itô Processes

An Itô process {𝑋𝑡} is a continuous-time stochastic process that can be written as the sum of

an ordinary (pathwise) Lebesgue time integral and an Itô stochastic integral:

𝑋𝑡(𝜔) = �
𝑡

0

𝑎(𝑠, 𝜔) d𝑠 + �
𝑡

0

𝑏(𝑠, 𝜔) d𝐵𝑠(𝜔), (1)

where the coefficient functions 𝑎(𝑡, 𝜔) and 𝑏(𝑡, 𝜔) are ℱ𝑡-adapted processes such that

∫
𝑡

0
|𝑎(𝑠, 𝜔)|d𝑠 < ∞, and ∫

𝑡

0
𝑏(𝑠, 𝜔)2 d𝑠 < ∞ almost surely. For compact notation we

commonly write

d𝑋 = 𝑎 d𝑡 + 𝑏 d𝐵,

with the understanding that this notation represents the integral representation in (??).
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The stochastic integral is constructed by approximating the integrand with step processes on

partitions. For a partitionΠ = {𝑡0, 𝑡1, … , 𝑡𝑛} of [0, 𝑇]with

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑡,

and ‖Π‖ → 0 as 𝑛 → ∞, the Itô integral is defined as themean-square (𝐿2) limit of Riemann-

type sums:

𝐼𝑡(𝜔) = �
𝑡

0

𝑏(𝑠, 𝜔) d𝐵𝑠(𝜔) = lim
𝑛→∞

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗, 𝜔)Δ𝐵𝑡𝑗(𝜔), (2)

where the limit is taken in 𝐿2 and, in particular, requires

E(𝐼2𝑡 ) < ∞.

The stochastic integral 𝐼𝑡(𝜔) is a random process: its value at each time 𝑡 depends on the

sample point 𝜔. Under the usual measurability and square-integrability conditions on the

integrand 𝑏(𝑡, 𝜔), the integral admits a modification that is continuous in 𝑡 for almost every𝜔

(i.e., there exists an indistinguishable version with continuous sample paths). Hence, without

loss of generality, wemay take 𝐼𝑡 to have continuous sample paths.

Itô Integrals are Martingales

Consider first a simple, adapted integrand of the form

𝑏(𝑡, 𝜔) =

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗, 𝜔)1(𝑡𝑗,𝑡𝑗+1](𝑡),

so that the Itô integral on this partition is

𝐼𝑡 =

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗, 𝜔) �𝐵𝑡𝑗+1 − 𝐵𝑡𝑗� .

2



Fix 0 ≤ 𝑠 ≤ 𝑡 and let 𝑘 be the index with 𝑡𝑘 ≤ 𝑠 < 𝑡𝑘+1. Split the sum into the contributions

up to time 𝑠 and those after 𝑠 so that

𝐼𝑡 =

𝑘−1

�

𝑗=0

𝑏(𝑡𝑗) �𝐵𝑡𝑗+1 − 𝐵𝑡𝑗�

���������������
=𝐼𝑠

+

𝑛−1

�

𝑗=𝑘

𝑏(𝑡𝑗) �𝐵𝑡𝑗+1 − 𝐵𝑡𝑗� .

The first term isℱ𝑠-measurable. For each 𝑗 ≥ 𝑘, 𝑏(𝑡𝑗) is measurable with respect toℱ𝑡𝑗 and

the increment 𝐵𝑡𝑗+1 − 𝐵𝑡𝑗 is independent ofℱ𝑡𝑗 and hasmean zero, so

E �𝑏(𝑡𝑗)(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗) ∣ ℱ𝑠� = 0.

Taking conditional expectation yields E(𝐼𝑡 ∣ ℱ𝑠) = 𝐼𝑠, so 𝐼𝑡 is a martingale.

The result for general square-integrable adapted integrands follows by approximating arbitrary

predictable integrands by simple ones and using the Itô isometry to pass to the limit.

Conversely, for the Brownian filtration there is the martingale representation theorem: any

ℱ𝑡-adaptedmartingale {𝑀𝑡}with E(𝑀
2
𝑡 ) < ∞ for all 𝑡 can be written as

𝑀𝑡 = 𝑀0 +�
𝑡

0

𝜑(𝑠, 𝜔) d𝐵𝑠,

for a predictable process𝜑 satisfying E�∫
𝑡

0
𝜑(𝑠, 𝜔)2 d𝑠� < ∞. This gives the converse repre-

sentation as a stochastic integral with respect to Brownianmotion.

Itô Isometry

The Itô isometry expresses the secondmoment of the stochastic integral:

E(𝐼2𝑡 ) = E��
𝑡

0

𝑏(𝑠, 𝜔)2 𝑑𝑠� ,

i.e., the mean square of the integral equals the expectation of the time-integral of the squared

integrand.
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Consider a simple, adapted integrand

𝑏(𝑠, 𝜔) =

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗, 𝜔)1(𝑡𝑗,𝑡𝑗+1](𝑠),

for which

𝐼𝑡 =

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗) �𝐵𝑡𝑗+1 − 𝐵𝑡𝑗� .

Using independence and zero mean of non-overlapping Brownian increments and orthogonal-

ity of cross-terms,

E(𝐼2𝑡 ) = E�

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)

2� = E�

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2(𝑡𝑗+1 − 𝑡𝑗)�

= E��
𝑡

0

𝑏(𝑠, 𝜔)2 d𝑠� .

The general result follows by approximating a square-integrable predictable integrand by such

simple processes and passing to the limit in 𝐿2. The isometry therefore gives an isometric

linear map from the space of square-integrable predictable integrands (with norm given by

E∫
𝑡

0
𝑏(𝑠)2 d𝑠) into 𝐿2 of the resulting stochastic integrals.

In particular, this yields the square-integrability requirement

E(𝐼2𝑡 ) = �
𝑡

0

𝑏2𝑠 𝑑𝑠 < ∞.

Quadratic Variation

The quadratic variation of a continuous semimartingale 𝑋 is the (pathwise) limit of squared

increments along a refining sequence of partitionsΠ = {0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑡}:

[𝑋, 𝑋]𝑡 = lim
𝑛→∞

𝑛−1

�

𝑗=0

�Δ𝑋𝑡𝑗�
2

,

whenever the limit exists in probability (or almost surely for continuous local martingales).
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Quadratic Variation of the Stochastic Integral

For the Itô integral

𝐼𝑡 = �
𝑡

0

𝑏(𝑠, 𝜔) d𝐵𝑠,

one has the explicit expression for its quadratic variation:

[𝐼, 𝐼]𝑡 = �
𝑡

0

𝑏2(𝑠, 𝜔) d𝑠.

We usually summarize this infinitesimally as

𝑑[𝐼, 𝐼]𝑡 = (𝑑𝐼)2 = 𝑏2 d𝑡.

Sketch of proof. Take a simple adapted integrand

𝑏(𝑠, 𝜔) =�

𝑗

𝑏(𝑡𝑗, 𝜔)1(𝑡𝑗,𝑡𝑗+1](𝑠),

so that

𝐼𝑡 =

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)Δ𝐵𝑡𝑗 .

In this case the quadratic variation along the partition is

[𝐼, 𝐼]𝑡 = lim
𝑛→∞

𝑛−1

�

𝑗=0

𝑏2(𝑡𝑗)(Δ𝐵𝑡𝑗)
2.

To show this limit equals ∫
𝑡

0
𝑏2(𝑠, 𝜔) 𝑑𝑠 in mean square, consider the mean-square differ-
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ence

E ��

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2(Δ𝐵𝑡𝑗)

2 −

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2Δ𝑡𝑗�

2

� = E ��

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2((Δ𝐵𝑡𝑗)

2 − Δ𝑡𝑗)�

2

�

= E �

𝑛−1

�

𝑗=0

𝑛−1

�

𝑘=0

𝑏(𝑡𝑗)
2𝑏(𝑡𝑘)

2((Δ𝐵𝑡𝑗)
2 − Δ𝑡𝑗)((Δ𝐵𝑡𝑘)

2 − Δ𝑡𝑘)�

=

𝑛−1

�

𝑗=0

𝑛−1

�

𝑘=0

E[𝑏(𝑡𝑗)
2𝑏(𝑡𝑘)

2((Δ𝐵𝑡𝑗)
2 − Δ𝑡𝑗)((Δ𝐵𝑡𝑘)

2 − Δ𝑡𝑘)].

If 𝑗 < 𝑘 the factors involving disjoint increments are independent, so the cross-terms vanish:

E �𝑏(𝑡𝑗)
2𝑏(𝑡𝑘)

2((Δ𝐵𝑡𝑗)
2 − Δ𝑡𝑗)((Δ𝐵𝑡𝑘)

2 − Δ𝑡𝑘)� = 0.

Using Δ𝐵𝑡𝑗 ∼ 𝒩(0, Δ𝑡𝑗)we have E[(Δ𝐵𝑡𝑗)
2] = Δ𝑡𝑗 and V[(Δ𝐵𝑡𝑗)

2] = 2(Δ𝑡𝑗)
2. Hence

E ��

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2(Δ𝐵𝑡𝑗)

2 −

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2Δ𝑡𝑗�

2

� =

𝑛−1

�

𝑗=0

E[𝑏(𝑡𝑗)
4((Δ𝐵𝑡𝑗)

2 − Δ𝑡𝑗)
2]

=

𝑛−1

�

𝑗=0

E[𝑏(𝑡𝑗)
4] E[((Δ𝐵𝑡𝑗)

2 − Δ𝑡𝑗)
2]

=

𝑛−1

�

𝑗=0

E[𝑏(𝑡𝑗)
4]2(Δ𝑡𝑗)

2

≤ ‖Π‖2
𝑛−1

�

𝑗=0

E[𝑏4(𝑡𝑗)](Δ𝑡𝑗).

Under the integrability assumption ∫
𝑡

0
E �𝑏4(𝑠)� d𝑠 = E �∫

𝑡

0
𝑏4(𝑠) d𝑠� < ∞, the right-hand side

tends to zero as ‖Π‖ → 0. Therefore

𝑛−1

�

𝑗=0

𝑏(𝑡𝑗)
2(Δ𝐵𝑡𝑗)

2 −−→
𝐿2

�
𝑡

0

𝑏2(𝑠, 𝜔) d𝑠,

which yields the desired quadratic variation identity. �
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Quadratic Variation of the Itô Process

For thegeneral Itôprocessdefined in (??), thequadratic variation isequivalent to thestochastic

integral, expressed as:

[𝑋, 𝑋]𝑡 = �
𝑡

0

𝑏(𝑠, 𝜔)2 d𝑠.

The drift term∫
𝑡

0
𝑎(𝑠, 𝜔) d𝑠 contributes zero to the quadratic variation because it is of bounded

variation. Specifically, its increments are of order Δ𝑡, leading to their squares being of order

(Δ𝑡)2, which vanish in the limit. Thus, only the stochastic integral contributes to the quadratic

variation.

To illustrate this, consider simple adapted integrands:

𝑎(𝑠, 𝜔) =�

𝑗

𝑎(𝑡𝑗, 𝜔)1(𝑡𝑗,𝑡𝑗+1](𝑠), 𝑏(𝑠, 𝜔) =�

𝑗

𝑏(𝑡𝑗, 𝜔)1(𝑡𝑗,𝑡𝑗+1](𝑠).

The increment of 𝑋 over the interval [𝑡𝑗, 𝑡𝑗+1] is given by:

Δ𝑋𝑡𝑗(𝜔) = 𝑎(𝑡𝑗, 𝜔)Δ𝑡𝑗 + 𝑏(𝑡𝑗, 𝜔)Δ𝐵𝑡𝑗(𝜔).

Consequently, we have:

�Δ𝑋𝑡𝑗�
2

= 𝑎(𝑡𝑗)
2(Δ𝑡𝑗)

2 + 2𝑎(𝑡𝑗)𝑏(𝑡𝑗)(Δ𝑡𝑗)(Δ𝐵𝑡𝑗) + 𝑏(𝑡𝑗)
2(Δ𝐵𝑡𝑗)

2.

In the limit as 𝑛 → ∞, we analyze the expression:

lim
𝑛→∞

𝑛−1

�

𝑗=0

�Δ𝑋𝑡𝑗�
2

.

The first term vanishes because:

𝑛−1

�

𝑗=0

𝑎(𝑡𝑗, 𝜔)
2(Δ𝑡𝑗)

2 ≤ ‖Π‖�
𝑡

0

𝑎(𝑠, 𝜔)2 d𝑠 → 0 as 𝑛 → ∞,

assuming that ∫
𝑡

0
𝑎(𝑠, 𝜔)2 d𝑠 < ∞ almost surely.
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Next, we analyze the second term by considering the sum:

𝑆𝑛 =

𝑛−1

�

𝑗=0

2𝑎(𝑡𝑗, 𝜔)𝑏(𝑡𝑗, 𝜔)Δ𝑡𝑗Δ𝐵𝑡𝑗 .

We can express the expected value as:

E(𝑆2𝑛) = E ��

𝑛−1

�

𝑗=0

2𝑎(𝑡𝑗)𝑏(𝑡𝑗)Δ𝑡𝑗Δ𝐵𝑡𝑗�

2

� = E �

𝑛−1

�

𝑗=0

𝑛−1

�

𝑘=0

4𝑎(𝑡𝑗)𝑏(𝑡𝑗)𝑎(𝑡𝑘)𝑏(𝑡𝑘)Δ𝑡𝑗Δ𝑡𝑘Δ𝐵𝑡𝑗Δ𝐵𝑡𝑘� .

Since for 𝑗 < 𝑘, the terms 𝑎(𝑡𝑗)𝑏(𝑡𝑗)𝑎(𝑡𝑘)𝑏(𝑡𝑘)Δ𝑡𝑗Δ𝑡𝑘Δ𝐵𝑡𝑗 are independent of Δ𝐵𝑡𝑘, all cross-

terms vanish, leading to:

E(𝑆2𝑛) = E �

𝑛−1

�

𝑗=0

4𝑎2(𝑡𝑗)𝑏
2(𝑡𝑗)(Δ𝑡𝑗)

2(Δ𝐵𝑡𝑗)
2�

=

𝑛−1

�

𝑗=0

E �4𝑎2(𝑡𝑗)𝑏
2(𝑡𝑗)(Δ𝑡𝑗)

2� E �(Δ𝐵𝑡𝑗)
2�

=

𝑛−1

�

𝑗=0

E �4𝑎2(𝑡𝑗)𝑏
2(𝑡𝑗)(Δ𝑡𝑗)

3�

≤ ‖Π‖2
𝑛−1

�

𝑗=0

E �4𝑎2(𝑡𝑗)𝑏
2(𝑡𝑗)Δ𝑡𝑗� .

As a result, we find:

lim
𝑛→∞

E(𝑆2𝑛) ≤ lim
𝑛→∞

‖Π‖2�
𝑡

0

E �4𝑎2(𝑠)𝑏2(𝑠)� 𝑑𝑠 = 0,

which implies that lim𝑛→∞ 𝑆𝑛 = 0 in 𝐿2 (and thus in probability).

Finally, we have already established that:

lim
𝑛→∞

𝑛−1

�

𝑗=0

𝑏2(𝑠, 𝜔)(Δ𝐵𝑡𝑗)
2 = �

𝑡

0

𝑏2(𝑠, 𝜔) d𝑠
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in 𝐿2. Therefore, we conclude:

�

𝑗

�Δ𝑋𝑡𝑗�
2

−−→
𝐿2

�
𝑡

0

𝑏(𝑠, 𝜔)2𝑑𝑠.

This result can be extended to general square-integrable adapted coefficients through approx-

imation with simple processes.

Itô’s Formula

Itô’s formula generalizes the chain rule to stochastic processes. It provides the precise way to

compute the differential of a smooth function of an Itô process.

Itô’s Formula (General Form)

Let 𝑋𝑡 be an Itô process satisfying

d𝑋𝑡 = 𝑎(𝑡, 𝜔) d𝑡 + 𝑏(𝑡, 𝜔) d𝐵𝑡,

and let 𝑓(𝑥, 𝑡) be a twice continuously differentiable function in 𝑥 and once continuously

differentiable in 𝑡. Then 𝑌𝑡 = 𝑓(𝑋𝑡, 𝑡) is also an Itô process with

d𝑌𝑡 = �𝑎(𝑡, 𝜔)
𝜕𝑓

𝜕𝑥
+
1

2
𝑏2(𝑡, 𝜔)

𝜕2𝑓

𝜕𝑥2
+
𝜕𝑓

𝜕𝑡
� d𝑡 + 𝑏(𝑡, 𝜔)

𝜕𝑓

𝜕𝑥
d𝐵𝑡.

Sketch of Proof. We begin with a second-order Taylor expansion of 𝑓(𝑋𝑡+Δ𝑡, 𝑡 + Δ𝑡) around

(𝑋𝑡, 𝑡):

𝑓(𝑋𝑡+Δ𝑡, 𝑡 + Δ𝑡) ≈ 𝑓(𝑋𝑡, 𝑡) +
𝜕𝑓

𝜕𝑡
Δ𝑡 +

𝜕𝑓

𝜕𝑥
Δ𝑋𝑡

+
1

2

𝜕2𝑓

𝜕𝑥2
(Δ𝑋𝑡)

2 +
1

2

𝜕2𝑓

𝜕𝑡2
(Δ𝑡)2 +

𝜕2𝑓

𝜕𝑥𝜕𝑡
Δ𝑋𝑡Δ𝑡 + …

Therefore, the increment in 𝑓 is

Δ𝑓 = 𝑓(𝑋𝑡+Δ𝑡, 𝑡 + Δ𝑡) − 𝑓(𝑋𝑡, 𝑡) ≈
𝜕𝑓

𝜕𝑡
Δ𝑡 +

𝜕𝑓

𝜕𝑥
Δ𝑋𝑡 +

1

2

𝜕2𝑓

𝜕𝑥2
(Δ𝑋𝑡)

2 + higher order terms.

9



For an Itô process with d𝑋𝑡 = 𝑎(𝑡, 𝜔) d𝑡 + 𝑏(𝑡, 𝜔) d𝐵𝑡, the increment over [𝑡, 𝑡 + Δ𝑡] is

Δ𝑋𝑡 = 𝑎(𝑡, 𝜔)Δ𝑡 + 𝑏(𝑡, 𝜔)Δ𝐵𝑡.

We already saw that (Δ𝑋𝑡)
2 ≈ 𝑏2(𝑡)Δ𝑡. Thus,

Δ𝑓 ≈ �
𝜕𝑓

𝜕𝑡
+ 𝑎(𝑡, 𝜔)

𝜕𝑓

𝜕𝑥
+
1

2
𝑏2(𝑡, 𝜔)

𝜕2𝑓

𝜕𝑥2
�Δ𝑡 + 𝑏(𝑡, 𝜔)

𝜕𝑓

𝜕𝑥
Δ𝐵𝑡.

Passing to the limit as Δ𝑡 → 0 yields Itô’s formula in differential form:

d𝑓 = �
𝜕𝑓

𝜕𝑡
+ 𝑎(𝑡, 𝜔)

𝜕𝑓

𝜕𝑥
+
1

2
𝑏2(𝑡, 𝜔)

𝜕2𝑓

𝜕𝑥2
� d𝑡 + 𝑏(𝑡, 𝜔)

𝜕𝑓

𝜕𝑥
d𝐵𝑡.

The additional term
1

2
𝑏2

𝜕2𝑓

𝜕𝑥2
d𝑡 arises because of the non-zero quadratic variation (d𝑋𝑡)

2 =

𝑏2 d𝑡. This term has no classical analogue—in ordinary calculus where paths are smooth, the

chain rule contains no such correction. The presence of this drift term is the defining feature

of stochastic calculus and reflects the fractal, rough nature of Brownianmotion. �
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