Prof. Lorenzo Naranjo Fall 2025

Stochastic Calculus

Introduction

Let (), F, P) be a probability space. Remember that Q1 is the set of all the possible outcomes
and F contains all the events A C () that we can assert if they happen or not.

In continuous time we define a stochastic process X;(w) as a collection of random variables
such that, given an outcome w € (), we can determine the path of the stochastic process over
time. We can also think about the stochastic process in the opposite way. That is, for a given
timet < T, how does the random variable X;(w) behaves.

Afiltration {F;} determines how information is disseminated as we observe a stochastic pro-
cess. At the very least, we want the filtration to remember what has happened before so that
FscFwhen0<s<t.

I1to Processes

An 1t6 process {X,} is a continuous-time stochastic process that can be written as the sum of
an ordinary (pathwise) Lebesgue time integral and an It6 stochastic integral:

t

t
Xi(w) =f a(s,w)ds +f0 b(s,w) dBs(w), (1)

0

where the coefficient functions a(t,w) and b(t, w) are F,-adapted processes such that
fot la(s,w)|ds < oo, and fotb(s, w)?ds < oo almost surely. For compact notation we
commonly write

dX =adt + bdB,

with the understanding that this notation represents the integral representation in (?7?).



The stochastic integral is constructed by approximating the integrand with step processes on
partitions. For a partition Il = {¢t,, t4, ..., t,} of [0, T] with

0=ty <t; <-<t,=t,

and ||II|| = 0 asn — oo, the It6 integral is defined as the mean-square (L?) limit of Riemann-
type sums:

" n-1
I(w) = f b(s, ) dB,(w) = lim 2 b(tj, )ABy (@), 2
n—-oo
0 =
where the limit is taken in L? and, in particular, requires

E(I?) < oo.

The stochastic integral I;(w) is a random process: its value at each time t depends on the
sample point w. Under the usual measurability and square-integrability conditions on the
integrand b(t, w), the integral admits a modification that is continuous in t for almost every w
(i.e., there exists an indistinguishable version with continuous sample paths). Hence, without
loss of generality, we may take I; to have continuous sample paths.

Itd Integrals are Martingales

Consider first a simple, adapted integrand of the form

n-1
b(t, w) = Z b(t), )1z, (0
=0

]

so that the Itd integral on this partition is

n-1
I, = Z b(t; @) (By,, — By).
=0



Fix 0 < s < tand let k be the index with t;, < s < tj4¢. Splitthe sum into the contributions
up to time s and those after s so that

k-1 n-1
It = z b(t]) (Bt]'+1 - Bt]) + Z b(t]) (Btj+1 - Btj).
=0 =k

=IS

The first term is Fy-measurable. For each j = k, b(t;) is measurable with respect to ith and

the increment Bth - Btj is independent of th and has mean zero, so

Eb(t)(By,, - B | K] = 0.
Taking conditional expectation yields E(I; | F5) = I, so I; is a martingale.

The result for general square-integrable adapted integrands follows by approximating arbitrary

predictable integrands by simple ones and using the [t6 isometry to pass to the limit.

Conversely, for the Brownian filtration there is the martingale representation theorem: any
F,-adapted martingale {M,} with E(M?) < o for all t can be written as

t

M, = My + f ¢(s,w) dBq,
0

for a predictable process ¢ satisfying E(fO't (s, a))z ds) < oo, This gives the converse repre-

sentation as a stochastic integral with respect to Brownian motion.

I1to Isometry
The I1t6 isometry expresses the second moment of the stochastic integral:

t
E(I?) = E<J; b(s,w)? ds),

i.e., the mean square of the integral equals the expectation of the time-integral of the squared
integrand.



Consider a simple, adapted integrand

n—-1
b(s, w) = Z b(t), ) 11;,11(5),
=0

for which
n—-1
It = z b(t]) (Btj+1 - Bt]) .
j=0

Using independence and zero mean of non-overlapping Brownian increments and orthogonal-
ity of cross-terms,

n-1 n—1
EUR) = E| ) b(t;)* By, = B)? | =E| D b(t)*(tjsr — 1))
=0 j=0

]

= E(fotb(s,w)zds>.

The general result follows by approximating a square-integrable predictable integrand by such
simple processes and passing to the limit in L?. The isometry therefore gives an isometric
linear map from the space of square-integrable predictable integrands (with norm given by
E fot b(s)? ds) into L? of the resulting stochastic integrals.

In particular, this yields the square-integrability requirement

t
E(I}) = j b2ds < oo.
0

Quadratic Variation

The quadratic variation of a continuous semimartingale X is the (pathwise) limit of squared
increments along a refining sequence of partitions[1 = {0 =t, <t; <-- < t, =t}

n-1
) 2
)= Y (8%,)"
j=0

whenever the limit exists in probability (or almost surely for continuous local martingales).



Quadratic Variation of the Stochastic Integral

For the It6 integral
t
Itzf b(s,w) dB;,
0

one has the explicit expression for its quadratic variation:

t
[1,1]; =f b?(s, w) ds.

0

We usually summarize this infinitesimally as

d[l,1], = (d1)? = b2 dt.

Sketch of proof. Take a simple adapted integrand
b5, @) = ) bty )1gy0,,,1(5),
j

so that
n—-1
I, = Z b(t))AB;,
j=0

In this case the quadratic variation along the partition is

n—-1
[1,1] = lim ) b?(t;)(8B,)*
=0

To show this limit equals fot b?(s,w) ds in mean square, consider the mean-square differ-



ence

n-1 n-1 2 [ n-1 2
z b(t))*(8By))? - z bt)?At | |=E b(t)*((AB,)? — At))
j=0 j=0 j=0
- n-1n-1
=E Z b(tj)zb(tk)z((ABtj)z — Atj))((AB,)* — Aty)
| j=0 k=0
n-1n-1

E[b(t))?b(t)* (ABy)? — At))((AB;,)* — Aty)]-

~
I
o
=
I
o

If j < kthe factorsinvolving disjointincrements are independent, so the cross-terms vanish:

E[b(¢))2b(t)?((AB,)? — At)((AB,,)? — Aty)| = 0.
Using AB;, ~ IV'(0, At;) we have E[(AB,)?] = At; and V[(AB,)?] = 2(At;)?. Hence

2

n-1 n—1 n—1
D b(ER@By) = ) b(e?at; | | = D Elb()*((ABy)* - At))?]
=0 =0 '

S -
|
=

= ) E[b(e)*"E((ABy)? — At)?]

S -
[l
[ ]

= ) E[b(t))*]2(At))?

-
1l
o

n—1
<M ) Elb*(epIAt).
=0

Under the integrability assumption fot E[b*(s)]ds =E (fot b*(s) ds) < o0, the right-hand side
tends to zero as ||II|| = 0. Therefore

n-—1

t
Z b(t))*(AB,)> —> fo b2(s, w) ds,
7=0

which yields the desired quadratic variation identity. [J



Quadratic Variation of the Itd Process

Forthe general Itd process defined in (??), the quadratic variationis equivalentto the stochastic
integral, expressed as:

t
[X,X], = fo b(s,w)?ds.

The drift term fot a(s, w) ds contributes zero to the quadratic variation because it is of bounded
variation. Specifically, its increments are of order At, leading to their squares being of order
(At)z, which vanish in the limit. Thus, only the stochastic integral contributes to the quadratic

variation.

To illustrate this, consider simple adapted integrands:

J

as,w) = Z a(tyo)ye,(s) (s, w) = Z b(tj, @) ty,,,1(5).
J
The increment of X over the interval [t}, tj,1] is given by:
Ath (w) = a(t;, w)At; + b(t), a))ABtj(w).
Consequently, we have:

(AXt].)Z = a(t;)?(At))? + 2a(t))b(t;) (At))(AB,) + b(t))? (AB,)?.

In the limit as n — oo, we analyze the expression:

n-1

2
A (Aij) '
j=0
The first term vanishes because:

n—1 "
Z a(tj, w)*(At))? < ||H||j a(s,w)?ds >0 asn - oo,
¢ 0
Jj=0

: t
assuming that [ a(s, )* ds < oo almost surely.



Next, we analyze the second term by considering the sum:

-1
Sn = Za(tj, (l))b(t], (L))At]ABt]
0

S

-
Il

We can express the expected value as:

2

n-1 n-1n-1
E(S2) = E 2 2a(t))b(¢)AL;AB, | | = E Z z 4a(t))b(t;))a(te)b(t)AGALAB AB, |.
=0 =0 k=0

Since for j < k, the terms a(tj)b(tj)a(tk)b(tk)AtjAtkABtj are independent of AB;, , all cross-
terms vanish, leading to:

n—-1
E(S2) = E 2 4a2(t;)b2 (t;) (At;)? (ABy,)?
=0
n-1

- Z E [4a2(t))b2(t;) (At))?| E| (AB,)? |
7=0
n-1

- 2 E [4a?(t))b%(t;)(At))?]
j=0
n-1

<M ) € [4a2(eb>(£)Aey].

Jj=0

As aresult, we find:
t
lim E(S2) < lim ||H||2J. E [4a?(s)b?(s)]ds = 0,
n—-oo n—oo 0

which implies that lim,,_,., S,, = 0in L? (and thus in probability).

Finally, we have already established that:

n—-1

t
lim bz(s,w)(ABtj)zzj b2(s, w) ds
n—co £ 0
J=0



in L2. Therefore, we conclude:

Z (Ath)z = fotb(s, w)?ds.

]

This result can be extended to general square-integrable adapted coefficients through approx-
imation with simple processes.

1t6’s Formula
It6’s formula generalizes the chain rule to stochastic processes. It provides the precise way to

compute the differential of a smooth function of an It process.

Itd6’s Formula (General Form)

Let X; be an It6 process satisfying
dXt = a(t, (U) dt + b(t, (1)) dBt,

and let f (x, t) be a twice continuously differentiable function in x and once continuously
differentiable int. Then Y; = f (X, t) is also an Itd process with
of o*f of of

1
_ 2 - =
dy, = <a(t, ) ix + 2b (t,w) 9x2 + 6t> dt + b(t, w) ox dB;.

Sketch of Proof. We begin with a second-order Taylor expansion of f(X¢4as t + At) around
(X¢, £):

af of
fXesar t +AL) = f(Xe, t) + EAt + aAXt
19%f 10%f 9% f
- 2 - r 2
Therefore, the incrementin f is
af of 102 .
Af = fKXevant + 00 = f(Xp ) = —2At + 22AX, + 5 =5 (AX,)* + higher order terms.



For an It6 process with dX; = a(t, w) dt + b(t, w) dB;, the increment over [t,t + At] is

We already saw that (AX;)? ~ b?(t)At. Thus,

2
Af ~ <af+a(t w)—f+ bz(t )—f>At+b(t w)—fABt

Passing to the limit as At — 0 yields Itd’s formula in differential form:
f of 1 °f af
d — t,w)== + 5b*(t,w)5=5 | dt + b(t, w)=— dB,.
f<+()ax+2() +b(t, )5~ dB,

The additional term sz dt arises because of the non-zero quadratic variation (dX;)? =

b? dt. This term has no classwal analogue—in ordinary calculus where paths are smooth, the
chain rule contains no such correction. The presence of this drift term is the defining feature
of stochastic calculus and reflects the fractal, rough nature of Brownian motion. [

10
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