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Ruin Probabilities

A Simple Random Walk

A simple randomwalk models the wealth of a gambler betting on fair coin flips. To start, let

{𝑋𝑖}
∞
𝑖=1 be a sequence of independent random variables, each taking values 1 or −1 with

equal probability
1

2
. Therefore, at each turn the gambler can either win one dollar or lose one

dollar.

By construction, the sequence {𝑋𝑖} is iid with mean E(𝑋𝑖) = 0.5 × 1 + 0.5(−1) = 0 and

variance V(𝑋𝑖) = 0.5 × (1 − 0)2 + 0.5 × (−1 − 0)2 = 1.

Let 𝑆0 be the initial wealth of the gambler. For 𝑛 ≥ 1, define

𝑆𝑛 = 𝑆0 +

𝑛

�

𝑖=1

𝑋𝑖.

Wewill assume that the wealth may become negative, which requires the gambler to honor

any potential losses.

Define 𝜏 as the first time 𝑛 > 0when 𝑆𝑛 reaches either 𝐴 or−𝐵:

𝜏 = min{𝑛 > 0 ∶ 𝑆𝑛 = 𝐴 or 𝑆𝑛 = −𝐵}.

At the random time 𝜏, 𝑆𝜏 is either 𝐴 or −𝐵, and we seek to compute the probability of the

gambler winning𝐴 dollars before losing𝐵 dollars, that is𝑃(𝑆𝜏 = 𝐴 ∣ 𝑆0 = 0). Also, it is almost

natural to ask how long do we need to wait for the gambler to either win 𝐴 dollars or to lose 𝐵

dollars. We will denote this expectation by E(𝜏 ∣ 𝑆0 = 0).
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Behavior of 𝜏

To solve these problems, we need first to make sure that the questions have an answer! That

is, how do we know for sure that the gambler’s net winnings will eventually reach 𝐴 or—𝐵?

Clearly, if the gambler wins 𝐴 + 𝐵 times in a row then she is guaranteed to reach a wealth

level of 𝐴 even if she starts at 𝑆0 = −𝐵. Let’s denote by 𝐸𝑘 the even that the gamblers wins

consecutively in the interval [𝑘(𝐴+𝐵)+1, (𝑘 +1)(𝐴+𝐵)]. Note that if we take 𝑘 = 0,𝐴 = 2

and 𝐵 = −1, then 𝐴 + 𝐵 = 3. If you win at times 𝑛 = 0, 𝑛 = 1, and 𝑛 = 2 you will have 3

dollars which guarantees that you will reach 𝐴 = 2 even if you start at 𝑆0 = −1.

Clearly, the events {𝐸𝑘} are independent and

𝑝 = P(𝐸𝑘) = �
1

2
�

𝐴+𝐵

> 0.

What if 𝑛 events 𝐸𝑘 occur and you are still playing? Then we know that

P(𝜏 ≥ 𝑛(𝐴 + 𝐵) ∣ 𝑆0 = 0) ≤ P �∩𝑛−1𝑘=0𝐸
𝐶
𝑘 � = (1 − 𝑝)𝑛 −−−→

𝑛→∞
0.

Since we also have that P(𝜏 = ∞ ∣ 𝑆0 = 0) ≤ P(𝜏 ≥ 𝑛(𝐴 + 𝐵) ∣ 𝑆0 = 0), for all 𝑛 ≥ 0, we see

that P(𝜏 = ∞ ∣ 𝑆0 = 0) = 0. In words, it must take a finite time for the wealth of the gambler

to reach 𝐴 or−𝐵.

Furthermore, for 𝑑 = 1, 2, …we also have that for 𝑘 ≥ 1

𝜏𝑑1{(𝑘−1)(𝐴+𝐵)<𝜏≤𝑘(𝐴+𝐵)} ≤ 𝑘𝑑(𝐴 + 𝐵)𝑑1{(𝑘−1)(𝐴+𝐵)<𝜏}.

Summing over 𝑘 = 1, 2, …we find that

𝜏𝑑 ≤

∞

�

𝑘=1

𝑘𝑑(𝐴 + 𝐵)𝑑1{(𝑘−1)(𝐴+𝐵)<𝜏}.

Finally, taking expectations on both sides yields

E(𝜏𝑑) ≤

∞

�

𝑘=1

𝑘𝑑(𝐴 + 𝐵)𝑑 P((𝑘 − 1)(𝐴 + 𝐵) < 𝜏) ≤

∞

�

𝑘=1

𝑘𝑑(𝐴 + 𝐵)𝑑(1 − 𝑝)𝑘.
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The series on the left converges since

lim
𝑘→∞

(𝑘 + 1)𝑑(𝐴 + 𝐵)𝑑(1 − 𝑝)𝑘+1

𝑘𝑑(𝐴 + 𝐵)𝑑(1 − 𝑝)𝑘
= lim

𝑘→∞
�1 +

1

𝑘
�

𝑑

(1 − 𝑝) = 1 − 𝑝 < 1.

Therefore, we have shows that E(𝜏𝑑) < ∞ for any integer 𝑑 ≥ 1. We compile the results in the

following result.

Stopping Time of the RandomWalk

Let {𝑋𝑖}
∞
𝑖=1 be a sequence of independent random variables, each taking values 1 or−1

with equal probability
1

2
. For 𝑛 ≥ 1, define

𝑆𝑛 = 𝑆0 +

𝑛

�

𝑖=1

𝑋𝑖,

where −𝐵 < 𝑆0 < 𝐴, and 𝐴 and 𝐵 are two positive integers. Define 𝜏 as the first time

𝑛 > 0when 𝑆𝑛 reaches either 𝐴 or−𝐵:

𝜏 = min{𝑛 > 0 ∶ 𝑆𝑛 = 𝐴 or 𝑆𝑛 = −𝐵}.

We then have that P(𝜏 = ∞) = 0 and E(𝜏𝑑) < ∞ for any integer 𝑑 ≥ 1.

Solving for the Probability

In this section we solve for 𝑃(𝑆𝜏 = 𝐴 ∣ 𝑆0 = 0). Interestingly, since the gambler can keep

playing without any explicit time expiration, the problem does not depend on time but only on

the wealth of the gambler at each point in time. In other words, the only relevant state variable

is the wealth level.

Let’s write

𝑓(𝐾) = 𝑃(𝑆𝜏 = 𝐴 ∣ 𝑆0 = 𝐾).

In words, 𝑓(𝐾) denotes the probability of reaching 𝐴 before−𝐵 if we start with a wealth level

−𝐵 ≤ 𝐾 ≤ 𝐴. Clearly, 𝑓(−𝐵) = 0 since if we start at 𝑆0 = −𝐵 the game is over. Also,
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𝑓(𝐴) = 1 since if we start at 𝑆0 = 𝐴we have reached our objective. These are our boundary

conditions that will allow us to solve for 𝑓(𝐾).

Now, we need to get an equation. We note that if we start with 𝑆0 = 𝐾 and we win, then our

wealth increases to𝐾 + 1 and we start all over as is time is back at zero but our initial wealth

is𝐾 + 1. Similarly, if we start with 𝑆0 = 𝐾 and we lose, then our wealth decreases to𝐾 − 1

and the problem is the same with an initial wealth of𝐾 − 1. Thus, it must be the case that

𝑓(𝐾) =
1

2
𝑓(𝐾 − 1) +

1

2
𝑓(𝐾 + 1). (1)

Equation (1) is a second-order linear difference equation in the wealth level𝐾. Equations like

this abound in probability and finance theory, as they capture the dynamics of quantities like

probabilities, expectations or values. Solutions to equations like (1) are typically of the form

𝑓(𝐾) = 𝑧𝐾 where 𝑧 is a real or complex number. If we try with 𝑓(𝐾) = 𝑧𝐾 in equation (1) we

find

𝑧𝐾 =
1

2
𝑧𝐾−1 +

1

2
𝑧𝐾+1,

so that

𝑧2 − 2𝑧 + 1 = (𝑧 − 1)2 = 0.

The only solution to the second order polynomial is 1, so we know that a constant is a solution.

But there should be two solutions, and that is in general what should happen to a second

order polynomial. When there is a repeated root, we can always try with𝐾𝑧𝐾 which we can

verify is also a solution. The general solution to equation (1) is then

𝑓(𝐾) = 𝛼 + 𝛽𝐾. (2)

To solve for 𝛼 and 𝛽 in equation (2) we just use the fact that 𝑓(−𝐵) = 0 and 𝑓(𝐴) = 1, so

that

𝛼 − 𝛽𝐵 = 0,

𝛼 + 𝛽𝐴 = 1.

This implies that 𝛼 =
𝐵

𝐴+𝐵
and 𝛽 =

1

𝐴+𝐵
so that

𝑓(𝐾) =
𝐵

𝐴 + 𝐵
+

𝐾

𝐴 + 𝐵
.
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We can finally conclude that

𝑃(𝑆𝜏 = 𝐴 ∣ 𝑆0 = 0) = 𝑓(0) =
𝐵

𝐴 + 𝐵
.

Therefore, the probability of making $10 before losing $10 is just 10/20 = 1/2, and the

probability of making $10 before losing $5 is 5/15 = 1/3.

Solving for the Expectation

We nowwant to solve for how long does it take on average to either win $A or lose $B. That is,

we want to compute E(𝜏 ∣ 𝑆0 = 0). For this, like before we define

𝑔(𝐾) = E(𝜏 ∣ 𝑆0 = 𝐾),

and note that 𝑔(−𝐵) = 𝑔(𝐴) = 0. We can then work the recursion as follows. If we are

currently at 𝑆0 = 𝐾, and we play oncemore, the expected time to reach the target or lose it all

has increased by one. If we win it’s the same problemwith either one extra or one less unit of

wealth, each happening with probability 1/2. Thus,

𝑔(𝐾) = 1 +
1

2
𝑔(𝐾 − 1) +

1

2
𝑔(𝐾 + 1). (3)

To solve for (3), we already have the homogenous solution computed earlier. We can find a

particular solution by trying 𝛾𝐾2 which is the next power of𝐾. Therefore,

𝛾𝐾2 = 1 +
𝛾

2
(𝐾 − 1)2 +

𝛾

2
(𝐾 + 1)2,

or

𝐾2 =
1

𝛾
+
1

2
(𝐾2 − 2𝐾 + 1) +

1

2
(𝐾2 + 2𝐾 + 1).

Thus, we find that 1/𝛾 + 1 = 0 or 𝛾 = −1. The general solution to (3) is then

𝑔(𝐾) = 𝛼 + 𝛽𝐾 − 𝐾2. (4)
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We solve for (4) by using

𝛼 − 𝛽𝐵 − 𝐵2 = 0,

𝛼 + 𝛽𝐴 − 𝐴2 = 0.

We find that

𝛽(𝐴 + 𝐵) = 𝐴2 − 𝐵2 = (𝐴 + 𝐵)(𝐴 − 𝐵),

so 𝛽 = 𝐴 − 𝐵 and 𝛼 = (𝐴 − 𝐵)𝐵 + 𝐵2 = 𝐴𝐵.

Thus, we conclude that

𝑔(𝐾) = 𝐴𝐵 + (𝐴 − 𝐵)𝐾 − 𝐾2,

and

E(𝜏 ∣ 𝑆0 = 0) = 𝑔(0) = 𝐴𝐵.
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