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Probability Basics

In these notes, I review important probability concepts that will be used throughout the course.

For clarity, I present the results using a discrete probability space. However, all results extend

to the general case, where (Ω, ℱ,P) consists of an arbitrary sample spaceΩ, a 𝜎-algebraℱ of

subsets ofΩ, and a probability measure P defined onℱ.

Probability Measure

Consider a probability space (Ω, ℱ,P), whereΩ = {𝜔1, 𝜔2, …} is a countable set of outcomes,

andℱ is thecollectionof all subsetsofΩ (thepower set2Ω). For anyevent𝐴 ⊆ Ω, its probability

is given by

P(𝐴) = �

𝜔∈𝐴

P(𝜔),

where P(𝜔) is the probability assigned to outcome𝜔. We require that P(Ω) = 1, so the total

probability sums to one. In practice, we focus on outcomes with positive probability, since

those with zero probability do not affect any calculations.

If {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} is a collection of pairwise disjoint subsets of Ω, then no outcome 𝜔 belongs

to more than one 𝐴𝑖. In this case, the probability of their union is simply the sum of their

probabilities:

P��

𝑖∈𝐼

𝐴𝑖� =�

𝑖∈𝐼

P(𝐴𝑖).

This property is called countable additivity, andwith P(Ω) = 1 is enough to define a probability

measure onℱ.
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Random Variables

A random variable 𝑋 is a function that assigns a real value to each outcome: 𝑋(𝜔) for𝜔 ∈ Ω.

Several outcomesmay have the same value of 𝑋. For any real number 𝑥, the set

{𝑋 = 𝑥} = {𝜔 ∈ Ω ∶ 𝑋(𝜔) = 𝑥}

collects all outcomes where 𝑋 takes the value 𝑥. The probability that 𝑋 equals 𝑥 is given by

the probability mass function:

𝑝𝑋(𝑥) = P(𝑋 = 𝑥).

For most 𝑥 ∈ ℝ, 𝑝𝑋(𝑥) = 0; only a countable set of values have positive probability. The

support of 𝑋 is the set

𝑅𝑋 = {𝑥 ∈ ℝ ∶ 𝑝𝑋(𝑥) > 0},

which is countable becauseΩ is countable.

Expectation and Variance

The expectation (mean) of 𝑋 is

E(𝑋) = �

𝑥∈𝑅𝑋

𝑥 𝑝𝑋(𝑥).

The expectation captures the average value of 𝑋 over all possible outcomes, weighted by their

probabilities. The variance of 𝑋measures the spread of 𝑋 around its mean:

V(𝑋) = �

𝑥∈𝑅𝑋

(𝑥 − E(𝑋))2 𝑝𝑋(𝑥).

2



Note that we have

V(𝑋) = �

𝑥∈𝑅𝑋

(𝑥 − E(𝑋))2 𝑝𝑋(𝑥)

= �

𝑥∈𝑅𝑋

(𝑥2 − 2𝑥 E(𝑋) + E(𝑋)2) 𝑝𝑋(𝑥)

= �

𝑥∈𝑅𝑋

𝑥2 𝑝𝑋(𝑥) − 2 E(𝑋) �

𝑥∈𝑅𝑋

𝑥 𝑝𝑋(𝑥) + E(𝑋)2

= E(𝑋2) − 2 E(𝑋)2 + E(𝑋)2

= E(𝑋2) − E(𝑋)2.

Joint Probability Mass Function

Suppose 𝑋 and 𝑌 are two random variables. Their joint probability mass function is

𝑝𝑋,𝑌(𝑥, 𝑦) = P(𝑋 = 𝑥, 𝑌 = 𝑦),

which gives the probability that 𝑋 takes value 𝑥 and 𝑌 takes value 𝑦 simultaneously.

To find the probability that 𝑌 equals a specific value 𝑦, we sum over all possible values of 𝑋:

𝑝𝑌(𝑦) = �

𝑥∈𝑅𝑋

𝑝𝑋,𝑌(𝑥, 𝑦).

This works because the events {𝑋 = 𝑥, 𝑌 = 𝑦} for different 𝑥 are disjoint and together cover

all ways 𝑌 can be 𝑦. Similarly,

𝑝𝑋(𝑥) = �

𝑦∈𝑅𝑌

𝑝𝑋,𝑌(𝑥, 𝑦).

Therefore, we canmarginalize out 𝑌 to obtain the probability mass function of 𝑋, in the same

way that we canmarginalize out 𝑋 to obtain the probability mass function of 𝑌.

3



Conditional Probability

For two events 𝐴 and 𝐵, the conditional probability of 𝐴 given 𝐵 is

P(𝐴 ∣ 𝐵) =
P(𝐴 ∩ 𝐵)

P(𝐵)
.

Similarly, the conditional probability mass function of 𝑌 given 𝑋 = 𝑥 is

𝑝𝑌∣𝑋(𝑦 ∣ 𝑥) =
𝑝𝑋,𝑌(𝑥, 𝑦)

𝑝𝑋(𝑥)
.

The conditional expectation of 𝑌 given 𝑋 = 𝑥 is

E(𝑌 ∣ 𝑋 = 𝑥) = �

𝑦∈𝑅𝑌

𝑦𝑝𝑌∣𝑋(𝑦 ∣ 𝑥).

This is a function of 𝑥, and we can define the random variable E(𝑌 ∣ 𝑋) by assigning to each

outcome𝜔 the value E(𝑌 ∣ 𝑋 = 𝑋(𝜔)).

A key result in probability theory is the law of iterated expectations:

E(E(𝑌 ∣ 𝑋)) = �

𝑥∈𝑅𝑋

E(𝑌 ∣ 𝑋 = 𝑥) 𝑝𝑋(𝑥)

= �

𝑥∈𝑅𝑋

�

𝑦∈𝑅𝑌

𝑦𝑝𝑌∣𝑋(𝑦 ∣ 𝑥) 𝑝𝑋(𝑥)

= �

𝑥∈𝑅𝑋

�

𝑦∈𝑅𝑌

𝑦𝑝𝑋,𝑌(𝑥, 𝑦)

= �

𝑦∈𝑅𝑌

𝑦𝑝𝑌(𝑦)

= E(𝑌).

This means that the expected value of the conditional expectation equals the expected value

of 𝑌 itself.
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Covariance and Correlation

Suppose we have a function 𝑔(𝑋, 𝑌) that depends on two random variables 𝑋 and 𝑌. To

compute its expected value, we take a weighted average of 𝑔(𝑥, 𝑦) over all possible pairs

(𝑥, 𝑦), using the joint probability mass function:

E(𝑔(𝑋, 𝑌)) = �

𝑥∈𝑅𝑋

�

𝑦∈𝑅𝑌

𝑔(𝑥, 𝑦) 𝑝𝑋,𝑌(𝑥, 𝑦).

Alternatively, this can be written as

E(𝑔(𝑋, 𝑌)) = �

(𝑥,𝑦)∈𝑅𝑋,𝑌

𝑔(𝑥, 𝑦) 𝑝𝑋,𝑌(𝑥, 𝑦),

where 𝑅𝑋,𝑌 is the set of all pairs (𝑥, 𝑦) with 𝑝𝑋,𝑌(𝑥, 𝑦) > 0. This formula generalizes the

expectation to any function of 𝑋 and 𝑌.

The covariance between 𝑋 and 𝑌measures howmuch the two variables move together. It is

defined as

Cov(𝑋, 𝑌) = E(𝑋𝑌) − E(𝑋) E(𝑌),

where E(𝑋𝑌) is the expected value of the product 𝑋𝑌. If 𝑋 and 𝑌 tend to be above or below

their means at the same time, the covariance is positive; if one tends to be above its mean

when the other is below, the covariance is negative.

The correlation between 𝑋 and 𝑌 is a normalizedmeasure of their linear relationship:

𝜌𝑋,𝑌 =
Cov(𝑋, 𝑌)

𝜎𝑋 𝜎𝑌
,

where 𝜎𝑋 and 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌. Correlation ranges from−1 (perfect

negative linear relationship) to 1 (perfect positive linear relationship), with 0meaning no linear

relationship.
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Independence

We say that two events 𝐴 and 𝐵 are independent if

P(𝐴 ∩ 𝐵) = P(𝐴)P(𝐵).

This definition is easily extended to random variables. Two random variables 𝑋 and 𝑌 are

independent if

P(𝑋 = 𝑥, 𝑌 = 𝑦) = P(𝑋 = 𝑥)P(𝑌 = 𝑦),

or in more compact notation if 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦). We then have that

E(𝑋𝑌) = �

𝑥∈𝑅𝑋

�

𝑦∈𝑅𝑌

𝑥𝑦 𝑓𝑋,𝑌(𝑥, 𝑦)

= �

𝑥∈𝑅𝑋

�

𝑦∈𝑅𝑌

𝑥𝑦 𝑓𝑋(𝑥)𝑓𝑌(𝑦)

= �

𝑦∈𝑅𝑌

𝑦𝑓𝑌(𝑦) �

𝑥∈𝑅𝑋

𝑥 𝑓𝑋(𝑥)

= �

𝑦∈𝑅𝑌

𝑦𝑓𝑌(𝑦) E(𝑋)

= E(𝑋) �

𝑦∈𝑅𝑌

𝑦𝑓𝑌(𝑦)

= E(𝑋) E(𝑌).

Thus, if two random variables are independent the expectation of their product is equal the

product of their expectations. An immediate consequence of this observation is that if 𝑋 and

𝑌 are independent then

Cov(𝑋, 𝑌) = E(𝑋𝑌) − E(𝑋) E(𝑌) = 0.

Note that the conversion of this statement is not true. Zero covariance only implies no linear

relationship, but 𝑋 and 𝑌may still be dependent in a nonlinear way.

Example 1. Consider a random variable 𝑋 that takes the values {1, 0, −1}, each with proba-
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bility 1/3. We compute:

E(𝑋) =
1

3
(1) +

1

3
(0) +

1

3
(−1) = 0,

and

E(𝑋3) =
1

3
(13) +

1

3
(03) +

1

3
((−1)3) = 0.

Now, define 𝑌 = 𝑋2. The covariance between 𝑋 and 𝑌 is

Cov(𝑋, 𝑌) = E(𝑋𝑌) − E(𝑋) E(𝑌) = E(𝑋3) − E(𝑋) E(𝑋2) = 0.

This example shows that 𝑋 and 𝑌 are uncorrelated (zero covariance), but they are not

independent—𝑌 is completely determined by 𝑋.

7


	Probability Measure
	Random Variables
	Expectation and Variance
	Joint Probability Mass Function
	Conditional Probability
	Covariance and Correlation
	Independence

