Prof. Lorenzo Naranjo Fall 2025

Probability Basics

Inthese notes, | review important probability concepts that will be used throughout the course.
For clarity, | present the results using a discrete probability space. However, all results extend
to the general case, where (£}, F, P) consists of an arbitrary sample space (), a g-algebra F of

subsets of (), and a probability measure P defined on F.

Probability Measure

Consider a probability space (Q, F, P), where Q = {w4, w,, ...} is a countable set of outcomes,
and F is the collection of all subsets of Q) (the power set 2%). Forany event A S , its probability
is given by
P() = ) P(w),
wEA

where P(w) is the probability assigned to outcome w. We require that P()) = 1, so the total
probability sums to one. In practice, we focus on outcomes with positive probability, since
those with zero probability do not affect any calculations.

If {A; : i € I}is a collection of pairwise disjoint subsets of (), then no outcome w belongs
to more than one 4;. In this case, the probability of their union is simply the sum of their

p <U Al-) - Z P(A)).

el i€l

probabilities:

This property is called countable additivity, and with P({)) = 1 is enough to define a probability
measure on F.



Random Variables

A random variable X is a function that assigns a real value to each outcome: X(w) for w € Q.
Several outcomes may have the same value of X. For any real number x, the set

X=x}={we: X(w) =x}

collects all outcomes where X takes the value x. The probability that X equals x is given by

the probability mass function:
px(x) = P(X = x).
For mostx € R, px(x) = 0; only a countable set of values have positive probability. The

support of X is the set
Ry = {x e R: px(x) > 0},

which is countable because () is countable.

Expectation and Variance

The expectation (mean) of X is

EC) = ) xpy(0).

XERy
The expectation captures the average value of X over all possible outcomes, weighted by their

probabilities. The variance of X measures the spread of X around its mean:

V) = ) (= ECY px(0).

XERy



Note that we have

VOO = ) (- ECO) px ()

XERx

= Z (x? — 2x E(X) + E(X)?) px(x)
XERyx

= z x%px(x) — 2E(X) Z xpx(x) + E(X)?
XERy XERx

= E(X?) — 2E(X)? + E(X)?
= E(X?) — E(X)2.

Joint Probability Mass Function
Suppose X and Y are two random variables. Their joint probability mass function is

pxy(x,y) =PX =x,Y =y),

which gives the probability that X takes value x and Y takes value y simultaneously.

To find the probability that Y equals a specific value y, we sum over all possible values of X:

py(y) = Z Pxy (%, Y).

X€ERy

This works because the events {X = x,Y = y} for different x are disjoint and together cover

allways Y can be y. Similarly,
px(®) = ) pry(xy)
YERy

Therefore, we can marginalize out Y to obtain the probability mass function of X, in the same
way that we can marginalize out X to obtain the probability mass function of Y.



Conditional Probability

For two events A and B, the conditional probability of A given B is

P(ANB)

P(A1B) = =55

Similarly, the conditional probability mass function of Y given X = x is

pyix (¥ | %) = PX,Y(X,}’)
X px(x)

The conditional expectation of Y given X = x is

BV IX=0)= ) Yoy | 0)

YERy

This is a function of x, and we can define the random variable E(Y | X) by assigning to each

outcome w thevalue E(Y | X = X(w)).

A key result in probability theory is the law of iterated expectations:

E(E(Y | X))

D E X = 1) ps(0)

XERx

= z Z yoyix(v | x) px(x)

XERx YERy

. Z Z Y Pxy(x,y)

X€ERyx YERy

This means that the expected value of the conditional expectation equals the expected value

of Y itself.



Covariance and Correlation

Suppose we have a function g(X,Y) that depends on two random variables X and Y. To
compute its expected value, we take a weighted average of g(x,y) over all possible pairs

(x,¥), using the joint probability mass function:

B = ) ) g0y pry(oy),

XERx YERY

Alternatively, this can be written as

EGXL) = Y gy prr(ny)
(x.y)E€Rxy

where Ry y is the set of all pairs (x,y) with px y(x,¥) > 0. This formula generalizes the

expectation to any functionof X and Y.

The covariance between X and Y measures how much the two variables move together. Itis
defined as
Cov(X,Y) = E(XY) — E(X) E(Y),

where E(XY) is the expected value of the product XY. If X and Y tend to be above or below
their means at the same time, the covariance is positive; if one tends to be above its mean

when the other is below, the covariance is negative.
The correlation between X and Y is a normalized measure of their linear relationship:

Cov(X,Y)

Pxy =
' Ox Oy

where gy and gy are the standard deviations of X and Y. Correlation ranges from —1 (perfect
negative linear relationship) to 1 (perfect positive linear relationship), with 0 meaning no linear

relationship.



Independence

We say that two events A and B are independent if
P(ANB) =P(A) P(B).

This definition is easily extended to random variables. Two random variables X and Y are
independent if

PX=xY=y)=PX=x)P(Y =vy),

or in more compact notation if fy v (x,y) = fx(x)fy(y). We then have that

EXY) = D Y 1y fur ()

XERx YERy
= > > AR
XERx YERy
= Y VRO D xfi()
YERy XERyx
= > YROEW
YERy
=0 ) YA
YERy
= E(X) E(Y).

Thus, if two random variables are independent the expectation of their product is equal the
product of their expectations. An immediate consequence of this observation is that if X and
Y are independent then

Cov(X,Y) = E(XY) — E(X) E(Y) = 0.

Note that the conversion of this statement is not true. Zero covariance only implies no linear
relationship, but X and Y may still be dependent in a nonlinear way.

Example 1. Consider a random variable X that takes the values {1, 0, —1}, each with proba-



bility 1/3. We compute:

1 1 1
E(X) = §(1) + 5(0) + §(—1) =0,

and 1 1 1
E(X?) = 5(13) + 5(03) + 5((—1)3) = 0.

Now, define Y = X2. The covariance between X and Y is
Cov(X,Y) = E(XY) —E(X)E(Y) = E(X3) — E(X) E(X?) = 0.

This example shows that X and Y are uncorrelated (zero covariance), but they are not
independent—Y is completely determined by X.
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