Probability Basics

In these notes, I review important probability concepts that will be used throughout the course. For clarity, I present the results using a discrete probability space. However, all results extend to the general case, where $(\Omega, \mathcal{F}, \mathsf{P})$ consists of an arbitrary sample space Ω , a σ -algebra \mathcal{F} of subsets of Ω , and a probability measure P defined on \mathcal{F} .

Probability Measure

Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$, where $\Omega = \{\omega_1, \omega_2, ...\}$ is a countable set of outcomes, and \mathcal{F} is the collection of all subsets of Ω (the power set 2^{Ω}). For any event $A \subseteq \Omega$, its probability is given by

$$P(A) = \sum_{\omega \in A} P(\omega),$$

where $P(\omega)$ is the probability assigned to outcome ω . We require that $P(\Omega) = 1$, so the total probability sums to one. In practice, we focus on outcomes with positive probability, since those with zero probability do not affect any calculations.

If $\{A_i:i\in I\}$ is a collection of pairwise disjoint subsets of Ω , then no outcome ω belongs to more than one A_i . In this case, the probability of their union is simply the sum of their probabilities:

$$P\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}P(A_i).$$

This property is called countable additivity, and with $P(\Omega) = 1$ is enough to define a probability measure on \mathcal{F} .

Random Variables

A random variable X is a function that assigns a real value to each outcome: $X(\omega)$ for $\omega \in \Omega$. Several outcomes may have the same value of X. For any real number x, the set

$$\{X = x\} = \{\omega \in \Omega : X(\omega) = x\}$$

collects all outcomes where X takes the value x. The probability that X equals x is given by the probability mass function:

$$p_X(x) = P(X = x).$$

For most $x \in \mathbb{R}$, $p_X(x) = 0$; only a countable set of values have positive probability. The support of X is the set

$$R_X = \{x \in \mathbb{R} : p_X(x) > 0\},$$

which is countable because Ω is countable.

Expectation and Variance

The expectation (mean) of X is

$$\mathsf{E}(X) = \sum_{x \in R_X} x \, p_X(x).$$

The expectation captures the average value of X over all possible outcomes, weighted by their probabilities. The *variance* of X measures the spread of X around its mean:

$$V(X) = \sum_{x \in R_X} (x - E(X))^2 p_X(x).$$

Note that we have

$$V(X) = \sum_{x \in R_X} (x - E(X))^2 p_X(x)$$

$$= \sum_{x \in R_X} (x^2 - 2x E(X) + E(X)^2) p_X(x)$$

$$= \sum_{x \in R_X} x^2 p_X(x) - 2 E(X) \sum_{x \in R_X} x p_X(x) + E(X)^2$$

$$= E(X^2) - 2 E(X)^2 + E(X)^2$$

$$= E(X^2) - E(X)^2.$$

Joint Probability Mass Function

Suppose X and Y are two random variables. Their joint probability mass function is

$$p_{X,Y}(x,y) = P(X = x, Y = y),$$

which gives the probability that X takes value x and Y takes value y simultaneously.

To find the probability that Y equals a specific value y, we sum over all possible values of X:

$$p_Y(y) = \sum_{x \in R_X} p_{X,Y}(x,y).$$

This works because the events $\{X=x,Y=y\}$ for different x are disjoint and together cover all ways Y can be y. Similarly,

$$p_X(x) = \sum_{y \in R_Y} p_{X,Y}(x,y).$$

Therefore, we can marginalize out Y to obtain the probability mass function of X, in the same way that we can marginalize out X to obtain the probability mass function of Y.

Conditional Probability

For two events A and B, the conditional probability of A given B is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Similarly, the conditional probability mass function of Y given X = x is

$$p_{Y|X}(y \mid x) = \frac{p_{X,Y}(x,y)}{p_X(x)}.$$

The conditional expectation of Y given X = x is

$$\mathsf{E}(Y\mid X=x) = \sum_{y\in R_Y} y\, p_{Y\mid X}(y\mid x).$$

This is a function of x, and we can define the random variable $E(Y \mid X)$ by assigning to each outcome ω the value $E(Y \mid X = X(\omega))$.

A key result in probability theory is the *law of iterated expectations*:

$$\begin{aligned} \mathsf{E}(\mathsf{E}(Y\mid X)) &= \sum_{x\in R_X} \mathsf{E}(Y\mid X=x) \, p_X(x) \\ &= \sum_{x\in R_X} \sum_{y\in R_Y} y \, p_{Y\mid X}(y\mid x) \, p_X(x) \\ &= \sum_{x\in R_X} \sum_{y\in R_Y} y \, p_{X,Y}(x,y) \\ &= \sum_{y\in R_Y} y \, p_Y(y) \\ &= \mathsf{E}(Y). \end{aligned}$$

This means that the expected value of the conditional expectation equals the expected value of Y itself.

Covariance and Correlation

Suppose we have a function g(X,Y) that depends on two random variables X and Y. To compute its expected value, we take a weighted average of g(x,y) over all possible pairs (x,y), using the joint probability mass function:

$$\mathsf{E}(g(X,Y)) = \sum_{x \in R_X} \sum_{y \in R_Y} g(x,y) \, p_{X,Y}(x,y).$$

Alternatively, this can be written as

$$E(g(X,Y)) = \sum_{(x,y) \in R_{X,Y}} g(x,y) \, p_{X,Y}(x,y),$$

where $R_{X,Y}$ is the set of all pairs (x,y) with $p_{X,Y}(x,y) > 0$. This formula generalizes the expectation to any function of X and Y.

The covariance between X and Y measures how much the two variables move together. It is defined as

$$Cov(X,Y) = E(XY) - E(X) E(Y),$$

where E(XY) is the expected value of the product XY. If X and Y tend to be above or below their means at the same time, the covariance is positive; if one tends to be above its mean when the other is below, the covariance is negative.

The correlation between X and Y is a normalized measure of their linear relationship:

$$\rho_{X,Y} = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \, \sigma_Y},$$

where σ_X and σ_Y are the standard deviations of X and Y. Correlation ranges from -1 (perfect negative linear relationship) to 1 (perfect positive linear relationship), with 0 meaning no linear relationship.

Independence

We say that two events A and B are independent if

$$P(A \cap B) = P(A) P(B)$$
.

This definition is easily extended to random variables. Two random variables X and Y are independent if

$$P(X = x, Y = y) = P(X = x) P(Y = y),$$

or in more compact notation if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$. We then have that

$$E(XY) = \sum_{x \in R_X} \sum_{y \in R_Y} xy f_{X,Y}(x,y)$$

$$= \sum_{x \in R_X} \sum_{y \in R_Y} xy f_X(x) f_Y(y)$$

$$= \sum_{y \in R_Y} y f_Y(y) \sum_{x \in R_X} x f_X(x)$$

$$= \sum_{y \in R_Y} y f_Y(y) E(X)$$

$$= E(X) \sum_{y \in R_Y} y f_Y(y)$$

$$= E(X) E(Y).$$

Thus, if two random variables are independent the expectation of their product is equal the product of their expectations. An immediate consequence of this observation is that if X and Y are independent then

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0.$$

Note that the conversion of this statement is not true. Zero covariance only implies no linear relationship, but X and Y may still be dependent in a nonlinear way.

Example 1. Consider a random variable X that takes the values $\{1, 0, -1\}$, each with proba-

bility 1/3. We compute:

$$E(X) = \frac{1}{3}(1) + \frac{1}{3}(0) + \frac{1}{3}(-1) = 0,$$

and

$$\mathsf{E}(X^3) = \frac{1}{3}(1^3) + \frac{1}{3}(0^3) + \frac{1}{3}((-1)^3) = 0.$$

Now, define $Y = X^2$. The covariance between X and Y is

$$Cov(X,Y) = E(XY) - E(X)E(Y) = E(X^3) - E(X)E(X^2) = 0.$$

This example shows that X and Y are uncorrelated (zero covariance), but they are not independent—Y is completely determined by X.