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Modeling Stock Prices

Geometric Brownian Motion

Now we turn our attention to modeling stock prices {S;}. We need to be careful, though, as
stock prices cannot be negative. We also would like to allow the model to display a certain
drift 4 and volatility o.

To achieve this, we model the percentage change of a stock price between t and t + At as

AS,

—— = ult + oAB;.

St
Note that the percentage change in price over an interval At is normally distributed with
mean uAt and variance o2At. Letting At — 0, the resulting process {S,} is called a geometric

Brownian motion (GBM) and is written as

dS
K3 = udt + odB.



Geometric Brownian Motion
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Figure 1: The figure plots simulated paths for a geometric Brownian motion {S;} where 0 < t10, S, =
100, u = 0.20, and o = 0.20. The dashed line denotes E (S,) = Syett.

With the dynamics of {S;} specified, we now turn to processes of the form X; = f(S;). This
is important because derivative prices depend on underlying state variables. When a stock
follows a GBM driven by a single Brownian motion, the no-arbitrage value of a European option
at time t depends only on the current stock price S and the remaining time to maturity T.
Thus, option prices can be written as (S, T), and we use Itd’s lemma to determine how such

functions evolve.

We begin by studying how X; = f(S;) behaves over time, assuming f(-) is smooth with
well-defined first and second derivatives. Later, we extend this to include time dependence.

I1t6’s Lemma for GBM

Consider a GBM process {S;} given by

dS = uSdt +oSdB, (1



and a twice-differentiable function f(S). If we define X = f(S5), then we have
1
dX = (qu'(S) + EJZSZf”(S)> dt + oSf'(S) dB.

Itis usually more convenient to use the box calculus when working with stochastic processes

defined through Brownian motions.

Box Calculus

Consider the GBM process {S;} defined in (1). The box calculus rules for Itd processes

are:
(dt)? =0,
(dt)(dB) = (dB)(dt) = 0,
(dB)? = dt.

Furthermore, denote Xg = f'(S) and Xgs = f"(S). Ité’s Lemma can then be restated as
1
dX = XS ds + EFSS(dS)Z'

where
(dS)? = (uSdt + 6SdB)? = g2S? dt.

Solving for GBM

Define X = (n(S), which implies S = eX. We have that X; = 1/S and Xgs = —1/52, which
implies
1
dX = XS ds + EXss(dS)Z
1 1 1
_ 2¢2
=3 (uSdt + oSdB) + 3 <—S—2>0 Sedt
1

= (udt + 0dB) — Eaz dt

1
= (u - 502> dt + o dB.



We can then solve for Xr:

T T 1 T
XT—onf dX:f (M—Eaz>dt+_f odB
0 0 0
1
:<M—EO'2>T+O'BT,

and conclude that

1
Sy =Sy exp ((u — EGZ> T + O'BT> . (2)

Properties of Stock Prices Following a GBM

Equation (2) can be rewritten as:
1
In(Sy) = In(Sy) + (u — E(ﬂ) T + oBr.
We can conclude that In(Sy) ~ N(E(In(S7)), V(In(S7))), where

E(In(S7)) = In(Sy) + (u — %02) T,
o(In(Sy)) = oVT.

In other words, St is lognormally distributed with mean and variance as described above.

Example 1. Consider a stock whose price at time t is given by S; and that follows a GBM. The
expected return is 12% per year and the volatility is 25% per year. The current spot price is
$25. If we denote X = In(Sy) and take T = 0.5, we have that:

E(Xr) = In(25) + (0.12 — 0.5(0.25)?) (0.5) = 3.2633,
SD(Xy) = 0.25V0.5 = 0.1768.

Hence, the 95% confidence interval for St is given by:

[e3.2633—1.96(0.1768) 63.2633+1.96(0.1768)] — [1848 3696]



Therefore, there is a 95% probability that the stock price in 6 months will lie between $18.48
and $36.96. O

Moments of the Stock Price

The fact that the stock price attime T is log-normally distributed allows us to compute the
mean and standard deviation of S;. Since In(Sy) ~ NV (m, s2), we have that

1.2 _1,2 1.2
E(Sp) = eMt35” = eln(50)+(,u 4 )T+20 T _ eN(S0) ghT — Soe“T.

In this model, the expected stock price at any point in the future is just the current stock price
growing at the rate u for T years.

Moments of the Stock Price

The expectation and standard deviation of S are given by:

E(Sr) = Soe#T»

SD(Sy) = E(Sp)Ve’T — 1.

Therefore, the expected stock price grows at a rate . The variance of Sy, however, is large and
increases exponentially with time.

Example 2. Consider a stock whose price at time t is given by S; and that follows a GBM. The
expected return is 12% per year and the volatility is 25% per year. The current spot price is
$25. The expected price and standard deviation 6 months from now are:

E(Sy) = 25e%12(05) = $26,55,

SD(Sy) = 26.55ve0-25%(05) — 1 = $4.73,



A Generalized Form of 1to’s Lemma

Most derivatives not only depend on the underlying asset but also depend on time since they
have fixed expiration dates. The analysis we did before for [t6’s Lemma generalizes easily to
handle this case. Consider a non-dividend paying stock that follows a GBM:

dS = uSdt + aSdw,

and a new process defined by X = f (S, t) where f is twice continuously differentiable in S
and once continuously differentiable in t. 1t6’s formula states that
of 10?2 of

— _7 __ 7 2 7
dX = 2 dS + 5 (dS)? + - dt.

In many financial applications, X represents a financial asset that expires attime T It is often
more convenient to express f as a function of time-to-maturity T rather than calendar time t.
In this case, as calendar time t moves forward by dt, the time-to-maturity T decreases by dt,

so that
of _ af
ot oT’
. . .. . . of 0%f of . . .
For notational simplicity, | like to write X = a_s’XSS = 552 and X; = 57 Using this notation,

I1t6’s formula becomes 1
dX == XS dS + EXSS(CIS)Z - XT dt
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