The Normal and Lognormal Distributions

The Normal Distribution

We say that a real-valued random variable (RV) X is normally distributed with mean μ and standard deviation σ if its *probability density function* (PDF) is:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

and we usually write $X \sim \mathcal{N}(\mu, \sigma^2)$. The parameters μ and σ are related to the first and second moments of X.

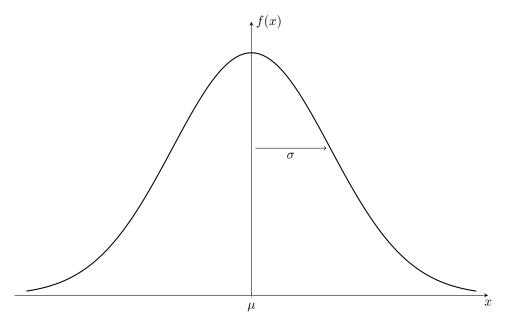


Figure 1: The figure shows the density function of a normally distributed random variable with mean μ and standard deviation σ .

Moments of the Normal Distribution

The parameter μ is the mean or expectation of X while σ denote its standard deviation. The variance of X is given by σ^2 .

Proof

Let $X=\mu+\sigma Z$ where $Z\sim\mathcal{N}(0,1)$. Start by defining $f(z)=e^{-\frac{1}{2}z^2}$, which implies that $f'(z)=-ze^{-\frac{1}{2}z^2}$ and $f''(x)=z^2e^{-\frac{1}{2}z^2}-e^{-\frac{1}{2}z^2}$. We can then write:

$$ze^{-\frac{1}{2}z^{2}} = -f'(z)$$
$$z^{2}e^{-\frac{1}{2}z^{2}} = f''(x) + f(z)$$

Then,

$$E(Z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} z e^{-\frac{1}{2}z^{2}} dz$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -f'(z) dz$$

$$= \frac{1}{\sqrt{2\pi}} \left(-f(z) \Big|_{-\infty}^{\infty} \right)$$

$$= 0,$$

$$E(Z^{2}) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} z^{2} e^{-\frac{1}{2}z^{2}} dz$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f''(x) + f(z) dz$$

$$= \frac{1}{\sqrt{2\pi}} \left(f'(z) \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} f(z) dz \right)$$

$$= \frac{1}{\sqrt{2\pi}} (0 + \sqrt{2\pi})$$

$$= 1,$$

$$V(Z) = E(Z^{2}) - E(Z)^{2}$$

$$= 1.$$

Note that we used the fact that

$$\int_{-\infty}^{\infty} f(z) \, dz = \sqrt{2\pi}.$$

We can now compute $E(X) = \mu + \sigma E(Z) = \mu$ and $V(X) = \sigma^2 V(Z) = \sigma^2$.

As with any real-valued random variable X, in order to compute the probability that $X \leq x$ we

need to integrate the density function from $-\infty$ to x:

$$P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(u-\mu)^{2}}{2\sigma^{2}}} du.$$

The function $F(x) = P(X \le x)$ is called the *cumulative distribution function* of X. The *Leibniz integral rule* implies that F'(x) = f(x).

The Standard Normal Distribution

An important case of normally distributed random variables is when $\mu=0$ and $\sigma=1$. In this case we say that $Z\sim \mathcal{N}(0,1)$ has the *standard normal distribution* and its cumulative distribution function is usually denoted by the capital Greek letter Φ (phi), and is defined by the integral:

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

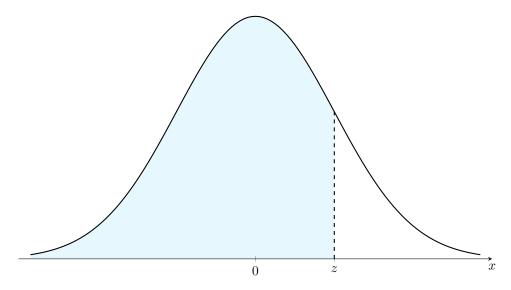


Figure 2: The blue shaded area represents $\Phi(z)$.

Since the integral cannot be solved in closed-form, the probability must then be obtained from a table or using a computer. For example, in R we can compute $\Phi(-0.4)$ by typing the following:

pnorm(-0.4)

[1] 0.3445783

If you prefer to use Excel, you need to type in a cell =norm.s.dist(-0.4, TRUE), which yields the same answer.

Left-Tail Probability

Knowing how to compute or approximate $\Phi(z)$ allows us to compute $P(X \leq x)$ when $X \sim \mathcal{N}(\mu, \sigma^2)$ since $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$:

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right)$$
$$= P\left(Z \le \frac{x - \mu}{\sigma}\right)$$
$$= \Phi\left(\frac{x - \mu}{\sigma}\right)$$

where $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$ is called a Z-score.

Example 1. Suppose that $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 10$ and $\sigma = 25$. What is the probability that $X \leq 0$?

$$P(X \le 0) = P\left(Z \le \frac{0-10}{25}\right)$$
$$= \Phi(-0.40)$$
$$= 0.3446.$$

Right-Tail Probability

For a random variable X, the *right-tail* probability is defined as P(X > x). Since $P(X \le x) + P(X > x) = 1$, we have that:

$$P(X > x) = 1 - P(X \le x).$$

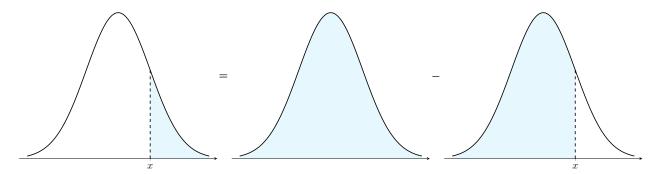


Figure 3: The right-tail probability is the probability of the whole distribution, which is one, minus the left-tail probability.

Example 2. Suppose that $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 10$ and $\sigma = 25$. What is the probability that X > 12?

$$P(X \le 12) = P\left(Z \le \frac{12-10}{25}\right)$$
$$= \Phi(0.08)$$
$$= 0.5319.$$

Therefore, P(X > 12) = 1 - 0.5319 = 0.4681.

Interval Probability

The probability that a random variable X falls within an interval $(X_1, X_2]$ is given by $P(x_1 < X \le x_2) = P(X \le x_2) - P(X \le x_1)$.

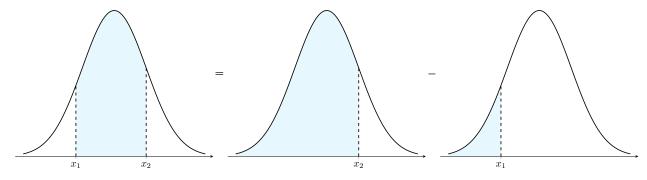


Figure 4: If you subtract the area to the left of x_1 to the area that is to the left of x_2 you obtain the probability of $x_1 < X \le x_2$.

Example 3. Suppose that $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 10$ and $\sigma = 25$. What is the probability that $2 < X \le 14$?

$$P(X \le 14) = P\left(Z \le \frac{14-10}{25}\right)$$

$$= \Phi(0.16)$$

$$= 0.5636,$$

$$P(X \le 2) = P\left(Z \le \frac{2-10}{25}\right)$$

$$= \Phi(-0.32)$$

$$= 0.3745.$$

Therefore, $P(2 < X \le 14) = 0.5636 - 0.3745 = 0.1891$.

The Lognormal Distribution

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Y = e^X$ is said to be *lognormally distributed* with the same parameters. The pdf of a lognormally distributed random variable Y can be obtained from the pdf of X.

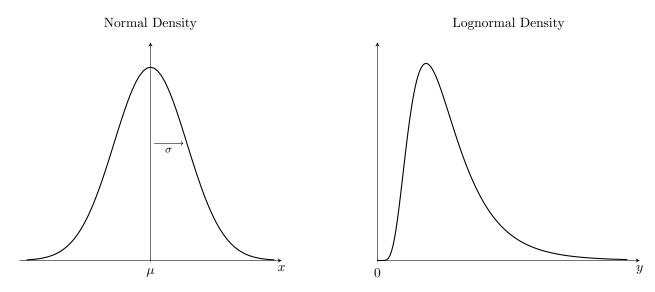


Figure 5: The figure shows the difference between a normal and a lognormal PDF with the same parameters.

Lognormal Density

If Y is lognormally distributed with parameters μ and σ^2 , the PDF of Y is given by:

$$f(y) = \frac{1}{y\sqrt{2\pi\sigma^2}}e^{-\frac{(\ln(y)-\mu)^2}{2\sigma^2}}.$$

Proof

Let $Y = e^X$ where $X = \mu + \sigma Z$ and $Z \sim \mathcal{N}(0, 1)$. Then,

$$P(Y \le y) = P(X \le \ln(y))$$

$$= \int_{-\infty}^{\ln(y)} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx.$$

Let's define $z=e^x$. This implies that $x=\ln(z)$, which in turn implies that dx=(1/z)dz. Therefore,

$$P(Y \le y) = \int_{-\infty}^{y} \frac{1}{z\sqrt{2\pi\sigma^{2}}} e^{-\frac{(\ln(z) - \mu)^{2}}{2\sigma^{2}}} dz.$$

Thus, the integrand of the previous expression is the probability density function of Y. \Box

Unlike the normal density, the lognormal density function is not symmetric around its mean. Normally distributed variables can take values in $(-\infty, \infty)$, whereas lognormally distributed variables are always positive.

Computing Probabilities

We can use the fact that the logarithm of a lognormal random variable is normally distributed to compute cumulative probabilities.

Example 4. Let $Y = e^{4+1.5Z}$ where $Z \sim \mathcal{N}(0,1)$. What is the probability that $Y \leq 100$?

$$P(Y \le 100) = P(e^X \le 100)$$

$$= P(X \le \ln(100))$$

$$= P\left(Z \le \frac{\ln(100) - 4}{1.5}\right)$$

$$= \Phi(0.4034)$$

$$= 0.6567$$

Therefore, there is a 65.67% chance that Y is less than or equal 100.

Moments

Moments of a Lognormal Distribution

Let $Y = e^{\mu + \sigma Z}$ where $Z \sim \mathcal{N}(0, 1)$. We have that:

$$E(Y) = e^{\mu + 0.5\sigma^2}$$

$$V(Y) = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$$

$$SD(Y) = E(Y)\sqrt{e^{\sigma^2} - 1}$$

Proof

$$E(Y) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} e^x dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2} + x} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-(\mu+\sigma^2))^2}{2\sigma^2} + (\mu+0.5\sigma^2)} dx$$

$$= e^{\mu+0.5\sigma^2} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-(\mu+\sigma^2))^2}{2\sigma^2}} dx}_{=1}$$

$$= e^{\mu+0.5\sigma^2}$$

Using the fact that $\alpha X \sim \mathcal{N}(\alpha \mu, (\alpha \sigma)^2)$, it is also possible to compute the expectation of

powers of lognormally distributed variables:

$$\mathsf{E}(Y^{\alpha}) = \mathsf{E}(e^{\alpha X}) = e^{\alpha \mu + 0.5(\alpha \sigma)^{2}}.$$

This is useful to compute the variance and standard deviation of Y:

$$V(Y) = E(Y^{2}) - (E(Y))^{2}$$

$$= e^{2\mu + 2\sigma^{2}} - e^{2\mu + \sigma^{2}}$$

$$= e^{2\mu + \sigma^{2}} (e^{\sigma^{2}} - 1)$$

$$SD(Y) = \sqrt{V(Y)}$$

$$= E(Y)\sqrt{e^{\sigma^{2}} - 1}$$

Example 5. Let $Y = e^{4+1.5Z}$ where $Z \sim \mathcal{N}(0, 1)$. The expectation and standard deviation of Y are:

$$E(Y) = e^{4+0.5(1.5^2)} = 168.17$$

$$SD(Y) = 168.17\sqrt{e^{1.5^2} - 1} = 489.95$$

Appendix

Percentiles

For a standard normal variable Z, a *right-tail percentile* is the value z_{α} above which we obtain a certain probability α . Mathematically, this means finding z_{α} such that:

$$P(Z > z_{\alpha}) = \alpha \Leftrightarrow P(Z \le z_{\alpha}) = 1 - \alpha.$$

This implies that $\Phi(z_{\alpha})=1-\alpha$, or $z_{\alpha}=\Phi^{-1}(1-\alpha)$, where $\Phi^{-1}(\cdot)$ denotes the inverse function of $\Phi(\cdot)$. Again, there is no closed-form expression for this function and we need a computer to obtain the values. For example, say that $\alpha=0.025$. In R we could compute $z_{\alpha}=\Phi^{-1}(0.975)$ by using the function qnorm as follows:

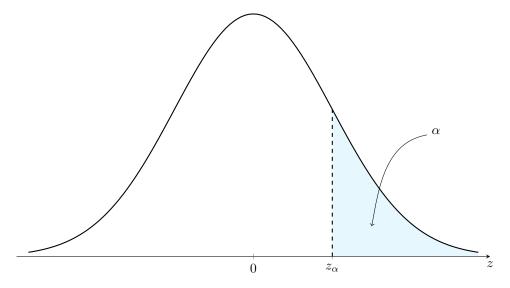


Figure 6: The right-tail percentile is the value z_{α} that gives an area to the right equal to α .

qnorm(0.975)

[1] 1.959964

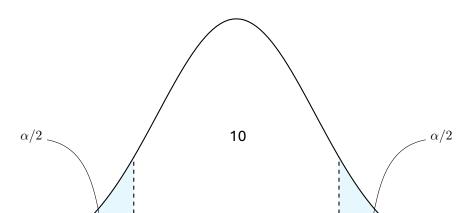
In Excel the function = norm.s.inv(0.975) provides the same result.

The following table shows common values for z_{α} :

α	z_{α}
0.050	1.64
0.025	1.96
0.010	2.33
0.005	2.58

A $(1-\alpha)$ two-sided confidence interval (CI) defines left and right percentiles such that the probability on each side is $\alpha/2$. For a standard normal variable Z, the symmetry of its pdf implies:

$$P(Z \le -z_{\alpha/2}) = P(Z > z_{\alpha/2}) = \alpha/2$$



Example 6. Since $z_{2.5\%} = 1.96$, the 95% confidence interval of Z is [-1.96, 1.96]. This means that if we randomly sample this variable 100,000 times, approximately 95,000 observations will fall inside this interval.

If $X \sim \mathcal{N}(\mu, \sigma^2)$, its confidence interval is determined by ξ and ζ such that:

$$P(X \le \xi) = \alpha/2$$

$$\Rightarrow P(Z \le \frac{\xi - \mu}{\sigma}) = \alpha/2,$$

$$P(X > \zeta) = \alpha/2$$

$$\Rightarrow P(Z > \frac{\zeta - \mu}{\sigma}) = \alpha/2,$$

which implies that $-z_{\alpha/2}=\frac{\xi-\mu}{\sigma}$ and $z_{\alpha/2}=\frac{\zeta-\mu}{\sigma}$. The $(1-\alpha)$ confidence interval for X is then $[\mu-z_{\alpha/2}\sigma,\mu+z_{\alpha/2}\sigma]$.

Example 7. Suppose that $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 10$ and $\sigma = 25$. Since $z_{2.5\%} = 1.96$, the 95% confidence interval of X is:

$$[10 - 1.96(25), 10 + 1.96(25)] = [-39, 59].$$

We could also apply the same priciple for a lognormal random variable. Let $Y=e^{\mu+\sigma Z}$ where $Z\sim\mathcal{N}(0,1)$. We then have that

$$\begin{aligned} -z_{\alpha/2} &< Z \le z_{\alpha/2} \\ \Rightarrow \mu - \sigma z_{\alpha/2} &< \mu + \sigma Z \le \mu + \sigma z_{\alpha/2} \\ \Rightarrow e^{\mu - \sigma z_{\alpha/2}} &< e^{\mu + \sigma Z} \le e^{\mu + \sigma z_{\alpha/2}} \end{aligned}$$

The $(1-\alpha)$ confidence interval for Y (centered around the mean of $\ln(Y)$) is $[e^{\mu-\sigma z_{\alpha/2}}, e^{\mu+\sigma z_{\alpha/2}}]$.

Example 8. Let $Y = e^{4+1.5Z}$ where $Z \sim \mathcal{N}(0,1)$. The 95% confidence interval for Y is:

$$[e^{4-1.96(1.5)}, e^{4+1.96(1.5)}] = [2.89, 1032.71].$$