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Martingales in Discrete Time

All the stochastic processes that we will study in this class will be generated from a sequence

of random variables. The specific sequence used to generate the stochastic process {𝑀𝑛 ∶

0 ≤ 𝑛 < ∞} determines the information setℱ𝑛 available at time 𝑛. As time passes, we learn

more about the processes and what was used to generate the process.

We call the collection of information sets {ℱ𝑛 ∶ 0 ≤ 𝑛 < ∞} a filtration. Since information

accumulates over time, we always have thatℱ𝑚 ⊂ ℱ𝑛 for𝑚 < 𝑛.

Martingales

Earlier, we defined the simple random walk as the process {𝑆𝑛 ∶ 0 ≤ 𝑛 < ∞}, built from a

sequence {𝑋𝑛 ∶ 1 ≤ 𝑛 < ∞} of independent random variables, where

𝑆𝑛 = 𝑆0 +

𝑛

�

𝑖=1

𝑋𝑖

for 𝑛 ≥ 1. Each 𝑋𝑖 is a fair coin toss, taking values−1 or 1with probability 1/2. At time 𝑛, the

outcomes of the first 𝑛 coin tosses are known, so the information set isℱ𝑛 = {𝑋1, 𝑋2, … , 𝑋𝑛},

containing all information revealed by 𝑋1, 𝑋2, … , 𝑋𝑛.

We can then see that

E(𝑆𝑛+1 ∣ ℱ𝑛) = E(𝑆𝑛 + 𝑋𝑛+1 ∣ ℱ𝑛) = 𝑆𝑛 + E(𝑋𝑛+1 ∣ ℱ𝑛).

There is an implicit assumption that the coin tosses are independent from each other. Intu-

itively, we do not expect to gain any information from the first 𝑛 tosses to determine the next

one. Thus, E(𝑋𝑛+1 ∣ ℱ𝑛) = E(𝑋𝑛+1 = 0), implying

E(𝑆𝑛+1 ∣ ℱ𝑛) = 𝑆𝑛.
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The process just defined is what we call amartingale. A martingale is a stochastic process

{𝑀𝑛} adapted to a filtration {ℱ𝑛} such that for all 𝑛,

E(𝑀𝑛+1 ∣ ℱ𝑛) = 𝑀𝑛.

In otherwords, givenall the informationup to time𝑛, theexpected valueof thenext observation

is equal to the current value. This property captures the idea that, on average, the process

does not “drift” up or down given the available information.

Example 1. We can generalize the simple randomwalk by defining {𝑋𝑛 ∶ 1 ≤ 𝑛 < ∞} as a

sequence of independent random variables such that E(𝑋𝑛) = 0 for all 𝑛 ≥ 1. We do not

assume any specific distribution nor we assume that the random variables are identically

distributed. We can then define

𝑆𝑛 = 𝑆0 +

𝑛

�

𝑖=1

𝑋𝑖.

We can do as before to find

E(𝑆𝑛+1 ∣ ℱ𝑛) = E(𝑆𝑛 + 𝑋𝑛+1 ∣ ℱ𝑛) = 𝑆𝑛 + E(𝑋𝑛+1 ∣ ℱ𝑛) = 𝑆𝑛 + E(𝑋𝑛+1) = 𝑆𝑛,

showing that {𝑆𝑛} is a martingale with respect to {ℱ𝑛}.

Example 2. Let {𝑋𝑛 ∶ 1 ≤ 𝑛 < ∞} be a sequence of independent random variables with

E(𝑋𝑛) = 0 and V(𝑋𝑛) = 𝜎2 for all 𝑛 ≥ 1. We do not require the random variables to be

identically distributed, but each hasmean zero and variance 𝜎2. Define 𝑆𝑛 as in Example 1,

and set

𝑀𝑛 = 𝑆2𝑛 − 𝑛𝜎2.

Expanding𝑀𝑛+1,

𝑀𝑛+1 = (𝑆𝑛 + 𝑋𝑛+1)
2 − (𝑛 + 1)𝜎2 = 𝑆2𝑛 + 2𝑆𝑛𝑋𝑛+1 + 𝑋2𝑛+1 − (𝑛 + 1)𝜎2.

Taking conditional expectation,

E(𝑀𝑛+1 ∣ ℱ𝑛) = 𝑆2𝑛 + 2𝑆𝑛 E(𝑋𝑛+1 ∣ ℱ𝑛) + E(𝑋2𝑛+1 ∣ ℱ𝑛) − (𝑛 + 1)𝜎2.

Because 𝑋𝑛+1 is independent of ℱ𝑛, we have E(𝑋𝑛+1 ∣ ℱ𝑛) = 0 and E(𝑋2𝑛+1 ∣ ℱ𝑛) = 𝜎2.
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Therefore,

E(𝑀𝑛+1 ∣ ℱ𝑛) = 𝑆2𝑛 + 𝜎2 − (𝑛 + 1)𝜎2 = 𝑆2𝑛 − 𝑛𝜎2 = 𝑀𝑛.

Thus, {𝑀𝑛} is a martingale with respect to {ℱ𝑛}.

Example 3. Let {𝑋𝑛 ∶ 1 ≤ 𝑛 < ∞} be a sequence of independent random variables with

𝑋𝑛 > 0 and E(𝑋𝑛) = 1 for all 𝑛 ≥ 1. Set 𝑀0 = 1 and define 𝑀𝑛 = 𝑋1𝑋2⋯𝑋𝑛. Since

𝑀𝑛+1 = 𝑀𝑛𝑋𝑛+1, we have

E(𝑀𝑛+1 ∣ ℱ𝑛) = 𝑀𝑛 E(𝑋𝑛+1 ∣ ℱ𝑛) = 𝑀𝑛 E(𝑋𝑛+1) = 𝑀𝑛.

Therefore, {𝑀𝑛} is a martingale with respect to {ℱ𝑛}.

Stopped Processes

A random variable 𝜏 taking values in {0, 1, 2, …} ∪ {∞} is called a stopping time with respect to

{ℱ𝑛 ∶ 0 ≤ 𝑛 ≤ ∞} if

{𝜏 ≤ 𝑛} ∈ ℱ𝑛 for all0 ≤ 𝑛 < ∞.

If 𝜏 < ∞ almost surely, we can define the stopped process

𝑌𝜏 =

∞

�

𝑘=0

1{𝜏=𝑘}𝑌𝑘.

In cases where P(𝜏 = ∞) > 0, we can always define the truncated stopping time 𝑛 ∧ 𝜏 =

min{𝑛, 𝜏}. The stopped process 𝑌𝑛∧𝜏 is always well defined.

Stopped Martingales are also Martingales

If {𝑀𝑛} is a martingale with respect to {ℱ𝑛}, then the stopped process {𝑀𝑛∧𝜏} is also a

martingale with respect to {ℱ𝑛}.

Proof.

We can always write

𝑀𝑛∧𝜏 = 𝑀𝑛+11{𝜏≥𝑛+1} +𝑀𝑛∧𝜏1{𝜏≤𝑛}.
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Since 1{𝜏≥𝑛+1} = 1 − 1{𝜏≤𝑛}, we see that 1{𝜏≥𝑛+1} isℱ𝑛 measurable. Thus

E(𝑀𝑛+11{𝜏≥𝑛+1} ∣ ℱ𝑛) = E(𝑀𝑛+1 ∣ ℱ𝑛)1{𝜏≥𝑛+1}

= 𝑀𝑛1{𝜏≥𝑛+1}

= 𝑀𝑛∧𝜏1{𝜏≥𝑛+1}.

E(𝑀(𝑛+1)∧𝜏|ℱ𝑛) = E(𝑀𝑛+11{𝜏≥𝑛+1} ∣ ℱ𝑛) + 𝑀𝑛∧𝜏1{𝜏≤𝑛}

= 𝑀𝑛∧𝜏1{𝜏≥𝑛+1} +𝑀𝑛∧𝜏1{𝜏≤𝑛}

= 𝑀𝑛∧𝜏,

proving that {𝑀𝑛∧𝜏} is a martingale with respect to {ℱ𝑛}.

Ruin Probabilities Again

Let us reconsider the simple symmetric randomwalk:

𝑆𝑛 =

𝑛

�

𝑖=1

𝑋𝑖

for𝑛 ≥ 1, where each𝑋𝑖 is an independent fair coin toss, taking values−1 or 1with probability

1/2. Define the stopping time

𝜏 = min{𝑛 > 0 ∶ 𝑆𝑛 = 𝐴 or 𝑆𝑛 = −𝐵},

which is measurable with respect to the filtrationℱ𝑛.

The Probability

Since 𝜏 is almost surely finite, the stopped process 𝑆𝑛∧𝜏 converges to 𝑆𝜏 as 𝑛 → ∞:

lim
𝑛→∞

𝑆𝑛∧𝜏 = 𝑆𝜏.

Recall that 𝑆𝑛 is a martingale, so by the stopped process property, 𝑆𝑛∧𝜏 is also amartingale.
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Moreover, since the process stops when it reaches either 𝐴 or−𝐵, we have

|𝑆𝑛∧𝜏| ≤ max(𝐴, 𝐵)

for all 𝑛. This uniform bound allows us to apply the dominated convergence theorem, yield-

ing

lim
𝑛→∞

E(𝑆𝑛∧𝜏) = E � lim
𝑛→∞

𝑆𝑛∧𝜏� = E(𝑆𝜏).

We can then conclude that

E(𝑆𝜏) = lim
𝑛→∞

E(𝑆𝑛∧𝜏) = 𝑆0∧𝜏 = 0.

Since we can also write

E(𝑆𝜏) = P(𝑆𝜏 = 𝐴)𝐴 + (1 − P(𝑆𝜏 = 𝐴))(−𝐵) = 0,

we get that

P(𝑆𝜏 = 𝐴) =
𝐵

𝐴 + 𝐵
.

The Expectation

Furthermore, define𝑀𝑛 = 𝑆2𝑛 − 𝑛 as before. Since for the simple randomwalk E(𝑋𝑛) = 0 and

E(𝑋2𝑛) = 1, this implies that {𝑀𝑛} is a martingale. Furthermore,

|𝑀𝑛∧𝜏| ≤ max(𝐴2, 𝐵2) + 𝜏.

Because E(𝜏)∞, we can apply again the dominated convergence theorem to show

lim
𝑛→∞

E(𝑀𝑛∧𝜏) = E � lim
𝑛→∞

𝑀𝑛∧𝜏� = E(𝑀𝜏),

but also

E(𝑀𝜏) = lim
𝑛→∞

E(𝑀𝑛∧𝜏) = 𝑀0∧𝜏 = 0.
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Since we also have that

E(𝑀𝜏) = 𝐴2
𝐵

𝐴 + 𝐵
+ 𝐵2

𝐴

𝐴 + 𝐵
− E(𝜏) = 0,

we conclude that

E(𝜏) = 𝐴𝐵.
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