Prof. Lorenzo Naranjo Fall 2025

Brownian Motion

The Simple Random Walk Again

In this section, we revisit the symmetric random walk discussed in previous lectures. This
process models the outcome of repeatedly flipping a fair coin: you gain $1 for heads and lose
$1 for tails. Each flip is independent and has expected value zero, so the cumulative gains

form a martingale.

Let {S,,} denote the position after n steps, defined recursively by
Sn1 = Sn + Xnt1,

where each X,,,1 is an independent random variable taking values +1 or —1 with probability
1/2 each. Thus, the sequence {X,,} is iid with

E(X,) =0.5x 1+ 0.5x (1) =0,

and
V(X;,)) =05x%x(1— 0)2 +05%x (—1-— 0)2 =1.

Forany 0 < m < n, we have

n
Spn=Sn + Z X,

i=m+1
so the increment S,, — S,,, depends only on the coin flips between times m + 1 and n. Moreover,

increments over disjoint intervals are independent.
The process {S, } is a martingale: form < n,
n
ESp | ) =Sm+E( Z X, Iﬂ-"m> =S,

i=m+1

since the future coin flips are independent of the past.



The variance of the increment is

V(Sn—Sm)=V< zn: Xi>= zn: VX;)) =n—m.

i=m+1 i=m+1

Finally, the quadratic variation of the simple symmetric random walk up to time n is

n n

S5l = ) Si=Si-)? =) X2 =n
i=1

=1

since each Xl-2 = 1. Unlike variance, quadratic variation is computed path-by-path, not as an

average over many realizations.

A Scaled Random Walk

Let’s now embed the symmetric random walk into a finite time interval and scale it so that the

variance over any interval [0, t] equals t.

Let At = T /n, and define discrete time points: t, = 0, t; = At, t, = 2At, ..., sothatt, =T.
At each step, instead of moving by +1 or —1, we move by ++/At or —V/At. Thus, we define the
scaled random walk as

m
B = Z VAt X,
=1

with Bt(;l) = 0, and each X; is independent and takes values +1 or —1 with probability 1/2.

The expected value and variance are:

E(BIY) = z VAL E(X;) = 0,
j=1

m
v(BM™) = Z At V(X;) = nAt = ty,
=1



The quadratic variationup totime 0 < t,,, < T is

Gi+1

n—1
[B™,B™M], = Z(B(") —B{")? =nat =t,.
=0

This scaling ensures that as nincreases, the process has variance proportional to elapsed
time, matching the behavior of a Brownian motion.

Limiting Distribution of the Scaled Random Walk

Rememberthat T = t,, = nAt. To analyze the limiting distribution of B}n) asn — oo (i.e., as
At — 0), we use the characteristic function, which uniquely determines the distribution of a
random variable. The characteristic function of X is

¢x(u) = E[e™¥],

where i is the imaginary unit (i2 = —1). For a normal random variable X ~ N (u, 02), the
characteristic function is

_iup—~u?0?
dx(u)=e"" 2" 7,

Now, consider the scaled random walk BT(n) = ZZ=1 VAt X,,, where each X, is independent
and takes values +1 with probability 1/2. Its characteristic function is

n n iuVAt —iuvar\"
E(eiuBT) — E(eiu2j=1\/A_th) — 1_[ E(eiu\/A_th) — (8 te >

| 2

j=1
1+ iuVAt — %uZAt +1— iuVAt — %uzAt
- 2
n
—luZT
=[1+-2
n




Therefore,
n

_1 2T
; uBry — | 2t _ U’
lim E[e'**T] = lim [ 1+ =e 2

n—-oo n—oo n

which is the characteristic function of a normal distribution with mean 0 and variance T. Thus,

asn — oo, the scaled random walk BT(n) converges in distribution to N (0, T).

Brownian Motion

We obtain Brownian motion as the limit of the scaled random walks asn — oo. The Brownian
motion inherits properties from these random walks. This leads to the following definition.

Brownian Motion

A continuous-time stochastic process {B,: t = 0} is called a Brownian motion if it has the
following four properties:

ii. For any finite setoftimes0 < t; < t; < t; < .. < t,, the random variables

By, — B¢,, Bt, — B,, Bt, — Bt,, ..., Bt, — By, _, areindependent.
iii. Forany0 < s < ttheincrementB; — B; ~ N'(0,t — s).
iv. Forall w in a set of probability one, B;(w) is a continuous function of t.
Forany t > 0 we have E(B;) = E(B; — By) = 0, and for 0 < s < t we have

Cov(Bs, B;) = Cov(Bs, B — Bs + By)
= Cov(By, B — Bg) + Cov(Bs, Bs)
=0+s=s.

Thus, forany s, t = 0 it must be the case that
Cov(Bs, By) = E(BgB;) = min(s, t).

This covariance structure is enough to characterize the Brownian motion as well. Itis in fact



one way to rigorously construct the Brownian motion process by noting thatfor0 < s < 1 and
0 <t <1wehave

1
E(BSBt) = f 1{[0,5]}(u)1{[0,t]}(u)du = min(s, t).
0

The previous relationship establishes anisometry between the Hilbert space of normalrandom
variables 7 € L£2(P) with inner product (X, Y) = E(X,Y), and the Hilbert space £2[0, 1] with

inner product

1
(. 9) = fo f ) gwdu

We can then show thatforany 0 < t < 1 we have

B, = Z(Q”k: 10,0021
k=0

where {Z, : 0 < k < oo} is a sequence of independent V'(0, 1) random variables, and
¢r : 0 < k < o is an orthonormal basis of £L2[0, 1]. By using the Haar basis in the previous
expression, it is possible to show that the series representation on the right generates a

Brownian motion.

Total and Quadratic Variation
Total Variation of a Function

To study the variation of a function over an interval, we begin by dividing it into smaller pieces.
Consider a partition of the time interval [0, T] given by

H = {to, tl' ey tn},
where the partition points satisfy

0:t0<t1<<tn:T



The mesh (or norm) of the partition Il is defined as the length of the longest subinterval:
I = ir1— ti).
[ITT| j:on"_‘f%_l(tJ“ t;)

As we refine the partition by adding more points, the mesh ||I1|| decreases and approaches
zero.

The total variation of a function f over the interval [0, T] measures the total “distance traveled”
by the function. Itis defined as

n+1

() = Z f(tr40) = FEDI

IIHII -0

In words, we partition the interval into smaller pieces, sum the absolute changes in f across

each piece, and then take the limit as the partition becomes arbitrarily fine.

For differentiable functions, the total variation has a simple integral representation. By the
mean-value theorem, for each subinterval [t}, t;,1] there exists a point t} € [t}, t;,1] where
the derivative equals the average rate of change:

f(tjr1) — f(E))

tirr =

= f'{@).

Rearranging and taking absolute values gives

n+1 n+1

D) = £ = ) 1F @I — 8y
j=0 j=0

The right-hand side is a Riemann sum for the integral of |f'(t)|. Taking the limit as the mesh
goes to zero yields

n+1

T
w() = tm OZIf (EDIEjan — 1) = jo £/ @ldt.

Thus, for differentiable functions, total variation equals the integral of the absolute value of

the derivative—a quantity that is always finite when f' is integrable.



Quadratic Variation of a Function

While total variation measures the absolute distance traveled by a function, quadratic variation
measures the sum of squared changes. For a function f over the interval [0, T'], the quadratic

variation is defined as
n+1

[ flr = 4m, ]Zo(f(t,-ﬂ) - FE)2

For continuously differentiable functions, the quadratic variation vanishes. To see why, we
again apply the mean-value theorem: for each subinterval there exists a point t}f € [tj, tj+1]
such that

ftje0) = () = £/t Ejar — 1)),
Squaring both sides and summing over all subintervals gives

n+1 n+1

D F) = FED* = D (F ) ton — )%
=0 =0

Since (tj4+1 — tj) < ||I1]| for all j, we can factor out one power of the mesh:

n+1 n+1

D i) = FED* < T (F Y Een — £y
=0 =0

The sum on the right is a Riemann sum for fOT(f’(t))zdt, which converges to this integral as
[|IT|] = 0. Therefore,

n+1

T
771 = g I, 356 =) = i, 0 | oanae=o

[IT1||—0 (ITT][—~0

In other words, for smooth functions the quadratic variation is always zero because the mesh

shrinks faster than the Riemann sum can accumulate.



Quadratic Variation of Brownian Motion

Unlike smooth functions whose quadratic variation is zero, Brownian motion has non-trivial
quadratic variation that accumulates linearly over time. We now prove that the quadratic

variation of Brownian motion over [0, T] converges to T in mean square.

Analysis

Consider a partition I1 of [0, T] and define the quadratic variation sum:
n-1
0n =) (B, — B
j=0

Our strategy is to show two things: first, that the expected value of Qy equals T for any partition;
second, that the variance of Qp vanishes as the mesh size goes to zero. Together, these facts
imply convergence in L?(P).

Step 1: Expected value of Q.
Since each increment Btj+1 - Btj is normally distributed with mean zero and variance t; 1 — t;,

we have
n—-1 n-1
EQn) = ) E(By,, —B)* = ) (tja—t) =tn—to=T.
j=0 j=0

Thus, regardless of how we partition the interval, the expected quadratic variation is always
T.

Step 2: Variance of Q.
To show that Qp; concentrates around its mean as ||II|| = 0, we compute its variance. For
a standard normal random variable Z ~ N'(0,1), we have E(Z*) = 3. Since (Btj+1 —

Btj)/,/tjﬂ —tj ~ N (0, 1), it follows that

2
2 4 2

= 3(tjp1 — t))% = (tj1 — t))* = 2(tj41 — )



Because Brownian increments over disjoint intervals are independent, the variance of their

sum equals the sum of their variances:
n-1 n-1
V(O = ) V(By,, —Bi)? =2 ) (tj:1 — t)?.
j=0 j=0
Each difference (tj,1 — t;) is bounded by the mesh ||II||, so we can write

n-1 n-1
V(Om =2 ) (41 = )% <210 ) (541 = 1) = 20N T,
j=0 =0

As the partition is refined and ||II|| = 0, the variance V(Qp) also goes to zero:

lim V(Qm) <2 lim |M||T = 0.
jm, V(@) < 2 tim ]

Step 3: Convergence in L?(P) and in probability.

Since E(Qp) = T and V(Qp) — 0, the mean-squared error converges to zero:

||rl1i|?lo E(Qn—T)*= IIllTiImO V(Qm) = 0.

This is L? convergence: Qp — T in L#(P).
Moreover, by Chebyshev’s inequality, forany € > 0,

V(@n)

&2

P(IQn—T[|>¢) < -0 as|H|| - 0.

P
This shows that Qp converges to T in probability: Q — T.

The Main Results

We see that the quadratic variation of Brownian motion over [0, t] forany 0 < t < T equals
t:
[B, B]t =t.



We observe that the differential of the quadratic variation, denoted as d[B, B], is equal to dt.
This relationship is often expressed in shorthand as (dB)(dB) = dt, which signifies that the
sum of the square increments of Brownian motion behaves similarly to the sum of discrete
time intervals. In mathematical terms, this can be represented as:

T
f d[B,B], =T.
0

Itis important to note, however, that the squared increments (Btj+1 - Bt].)2 do not equal the
time intervals tj, — t;. This distinction arises because:

P50 75 avco,1)
Lji+1 — L

We can also establish that

n-1
| PV )
Am > By, = Bt =) < im M T =0,
j=0
and

n-—-1
lim Zt- —t)%2< lim ||T =0.
”nll_}oj—o(ﬂ-l i) ||1'II|—>0” |

These results imply that the product of the increments of Brownian motion and the corre-

sponding time intervals approaches zero, which we denote as (dB)(dt) = 0. Similarly, the
product of two infinitesimal time intervals is also zero, expressed as (dt)(dt) = 0.

Brownian Motion is Nowhere Differentiable

Furthermore, we note that

lim max |B... —B.,|=0
ITT||—0 Osjsn_ll ti+1 tjl ,

10



which follows from the uniform continuity of the Brownian motion over any finite interval. To
analyze the behavior of the increments, we define

0<jsn-1

n-1
2
Mp= max |By, — Bl Qp = z (By,, = Br)"
j=0
For each increment, we have the inequality (Btj+1 — Btj)2 < Mp |Btj+1 — Btj|, leading to the

conclusion that
n-1 0
I
z |Btj+1 - Btj' = M_l'[
j=0

As we refine the partition such that ||IT|| = 0, both My — 0 and Q — T. This implies that the
total variation of Brownian motion over the interval [0, T'] is almost surely infinite.

In particular, this result indicates that Brownian paths are almost surely nowhere differentiable.
If they were differentiable at almost every point, the total variation would have to be finite.
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