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BrownianMotion

The Simple Random Walk Again

In this section, we revisit the symmetric random walk discussed in previous lectures. This

process models the outcome of repeatedly flipping a fair coin: you gain $1 for heads and lose

$1 for tails. Each flip is independent and has expected value zero, so the cumulative gains

form amartingale.

Let {𝑆𝑛} denote the position after 𝑛 steps, defined recursively by

𝑆𝑛+1 = 𝑆𝑛 + 𝑋𝑛+1,

where each 𝑋𝑛+1 is an independent random variable taking values+1 or−1with probability

1/2 each. Thus, the sequence {𝑋𝑛} is iid with

E(𝑋𝑛) = 0.5 × 1 + 0.5 × (−1) = 0,

and

V(𝑋𝑛) = 0.5 × (1 − 0)2 + 0.5 × (−1 − 0)2 = 1.

For any 0 ≤ 𝑚 < 𝑛, we have

𝑆𝑛 = 𝑆𝑚 +

𝑛

�

𝑖=𝑚+1

𝑋𝑖,

so the increment 𝑆𝑛−𝑆𝑚 depends only on the coin flips between times𝑚+1 and𝑛. Moreover,

increments over disjoint intervals are independent.

The process {𝑆𝑛} is a martingale: for𝑚 < 𝑛,

E(𝑆𝑛 ∣ ℱ𝑚) = 𝑆𝑚 + E�

𝑛

�

𝑖=𝑚+1

𝑋𝑖 ∣ ℱ𝑚� = 𝑆𝑚,

since the future coin flips are independent of the past.
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The variance of the increment is

V(𝑆𝑛 − 𝑆𝑚) = V�

𝑛

�

𝑖=𝑚+1

𝑋𝑖� =

𝑛

�

𝑖=𝑚+1

V(𝑋𝑖) = 𝑛 −𝑚.

Finally, the quadratic variation of the simple symmetric randomwalk up to time 𝑛 is

[𝑆, 𝑆]𝑛 =

𝑛

�

𝑖=1

(𝑆𝑖 − 𝑆𝑖−1)
2 =

𝑛

�

𝑖=1

𝑋2
𝑖 = 𝑛,

since each 𝑋2
𝑖 = 1. Unlike variance, quadratic variation is computed path-by-path, not as an

average over many realizations.

A Scaled Random Walk

Let’s now embed the symmetric randomwalk into a finite time interval and scale it so that the

variance over any interval [0, 𝑡] equals 𝑡.

Let Δ𝑡 = 𝑇/𝑛, and define discrete time points: 𝑡0 = 0, 𝑡1 = Δ𝑡, 𝑡2 = 2Δ𝑡, …, so that 𝑡𝑛 = 𝑇.

At each step, instead of moving by+1 or−1, wemove by+√Δ𝑡 or−√Δ𝑡. Thus, we define the

scaled randomwalk as

𝐵
(𝑛)
𝑡𝑚

=

𝑚

�

𝑗=1

√Δ𝑡𝑋𝑗,

with 𝐵
(𝑛)
𝑡0

= 0, and each 𝑋𝑖 is independent and takes values+1 or−1with probability 1/2.

The expected value and variance are:

E(𝐵
(𝑛)
𝑡𝑚

) =

𝑚

�

𝑗=1

√Δ𝑡 E(𝑋𝑗) = 0,

V(𝐵
(𝑛)
𝑡𝑚

) =

𝑚

�

𝑗=1

Δ𝑡 V(𝑋𝑗) = 𝑛Δ𝑡 = 𝑡𝑚.
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The quadratic variation up to time 0 ≤ 𝑡𝑚 ≤ 𝑇 is

[𝐵(𝑛), 𝐵(𝑛)]𝑡𝑚 =

𝑛−1

�

𝑗=0

(𝐵
(𝑛)
𝑡𝑗+1

− 𝐵
(𝑛)
𝑡𝑗

)2 = 𝑛Δ𝑡 = 𝑡𝑛.

This scaling ensures that as 𝑛 increases, the process has variance proportional to elapsed

time, matching the behavior of a Brownianmotion.

Limiting Distribution of the Scaled Random Walk

Remember that 𝑇 = 𝑡𝑛 = 𝑛Δ𝑡. To analyze the limiting distribution of 𝐵
(𝑛)
𝑇 as 𝑛 → ∞ (i.e., as

Δ𝑡 → 0), we use the characteristic function, which uniquely determines the distribution of a

random variable. The characteristic function of 𝑋 is

𝜙𝑋(𝑢) = E[𝑒𝑖𝑢𝑋],

where 𝑖 is the imaginary unit (𝑖2 = −1). For a normal random variable 𝑋 ∼ 𝒩(𝜇, 𝜎2), the

characteristic function is

𝜙𝑋(𝑢) = 𝑒
𝑖𝑢𝜇−

1

2
𝑢2𝜎2

.

Now, consider the scaled randomwalk 𝐵
(𝑛)
𝑇 = ∑

𝑛
𝑘=1 √Δ𝑡𝑋𝑘, where each 𝑋𝑘 is independent

and takes values±1with probability 1/2. Its characteristic function is

E(𝑒𝑖𝑢𝐵𝑇) = E �𝑒
𝑖𝑢 ∑

𝑛
𝑗=1 √Δ𝑡𝑋𝑗� =

𝑛

�

𝑗=1

E �𝑒𝑖𝑢√Δ𝑡𝑋𝑗� = �
𝑒𝑖𝑢√Δ𝑡 + 𝑒−𝑖𝑢√Δ𝑡

2
�

𝑛

≈ �
1 + 𝑖𝑢√Δ𝑡 −

1

2
𝑢2Δ𝑡 + 1 − 𝑖𝑢√Δ𝑡 −

1

2
𝑢2Δ𝑡

2
�

𝑛

= �1 +
−
1

2
𝑢2𝑇

𝑛
�

𝑛

.
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Therefore,

lim
𝑛→∞

E[𝑒𝑖𝑢𝐵𝑇] = lim
𝑛→∞

�1 +
−
1

2
𝑢2𝑇

𝑛
�

𝑛

= 𝑒
−
1

2
𝑢2𝑇

,

which is the characteristic function of a normal distribution withmean 0 and variance 𝑇. Thus,

as 𝑛 → ∞, the scaled randomwalk 𝐵
(𝑛)
𝑇 converges in distribution to𝒩(0, 𝑇).

Brownian Motion

We obtain Brownianmotion as the limit of the scaled randomwalks as 𝑛 → ∞. The Brownian

motion inherits properties from these randomwalks. This leads to the following definition.

Brownian Motion

A continuous-time stochastic process {𝐵𝑡 ∶ 𝑡 ≥ 0} is called a Brownianmotion if it has the

following four properties:

i. 𝐵0 = 0.

ii. For any finite set of times 0 ≤ 𝑡0 < 𝑡1 < 𝑡2 < … < 𝑡𝑛, the random variables

𝐵𝑡1 − 𝐵𝑡0 , 𝐵𝑡2 − 𝐵𝑡1 , 𝐵𝑡3 − 𝐵𝑡2 , … , 𝐵𝑡𝑛 − 𝐵𝑡𝑛−1 are independent.

iii. For any 0 ≤ 𝑠 ≤ 𝑡 the increment 𝐵𝑡 − 𝐵𝑠 ∼ 𝒩(0, 𝑡 − 𝑠).

iv. For all𝜔 in a set of probability one, 𝐵𝑡(𝜔) is a continuous function of 𝑡.

For any 𝑡 ≥ 0we have E(𝐵𝑡) = E(𝐵𝑡 − 𝐵0) = 0, and for 0 ≤ 𝑠 ≤ 𝑡we have

Cov(𝐵𝑠, 𝐵𝑡) = Cov(𝐵𝑠, 𝐵𝑡 − 𝐵𝑠 + 𝐵𝑠)

= Cov(𝐵𝑠, 𝐵𝑡 − 𝐵𝑠) + Cov(𝐵𝑠, 𝐵𝑠)

= 0 + 𝑠 = 𝑠.

Thus, for any 𝑠, 𝑡 ≥ 0 it must be the case that

Cov(𝐵𝑠, 𝐵𝑡) = E(𝐵𝑠𝐵𝑡) = min(𝑠, 𝑡).

This covariance structure is enough to characterize the Brownianmotion as well. It is in fact
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one way to rigorously construct the Brownianmotion process by noting that for 0 ≤ 𝑠 ≤ 1 and

0 ≤ 𝑡 ≤ 1we have

E(𝐵𝑠𝐵𝑡) = �
1

0

1{[0,𝑠]}(𝑢)1{[0,𝑡]}(𝑢)𝑑𝑢 = min(𝑠, 𝑡).

Theprevious relationshipestablishesan isometry between theHilbert spaceof normal random

variablesℋ ∈ ℒ2(P)with inner product ⟨𝑋, 𝑌⟩ = E(𝑋, 𝑌), and the Hilbert space ℒ2[0, 1]with

inner product

⟨𝑓, 𝑔⟩ = �
1

0

𝑓(𝑢)𝑔(𝑢)𝑑𝑢.

We can then show that for any 0 ≤ 𝑡 ≤ 1we have

𝐵𝑡 =

∞

�

𝑘=0

⟨𝜙𝑘, 1{[0,𝑡]}⟩𝑍𝑘,

where {𝑍𝑘 ∶ 0 ≤ 𝑘 < ∞} is a sequence of independent 𝒩(0, 1) random variables, and

𝜙𝑘 ∶ 0 ≤ 𝑘 < ∞ is an orthonormal basis of ℒ2[0, 1]. By using the Haar basis in the previous

expression, it is possible to show that the series representation on the right generates a

Brownianmotion.

Total and Quadratic Variation

Total Variation of a Function

To study the variation of a function over an interval, we begin by dividing it into smaller pieces.

Consider a partition of the time interval [0, 𝑇] given by

Π = {𝑡0, 𝑡1, … , 𝑡𝑛},

where the partition points satisfy

0 = 𝑡0 < 𝑡1 < … < 𝑡𝑛 = 𝑇.
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Themesh (or norm) of the partitionΠ is defined as the length of the longest subinterval:

‖Π‖ = max
𝑗=0,1,…,𝑛−1

(𝑡𝑗+1 − 𝑡𝑗).

As we refine the partition by adding more points, themesh ‖Π‖ decreases and approaches

zero.

The total variation of a function 𝑓 over the interval [0, 𝑇]measures the total “distance traveled”

by the function. It is defined as

𝑉𝑇(𝑓) = lim
‖Π‖→0

𝑛+1

�

𝑗=0

|𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗)|.

In words, we partition the interval into smaller pieces, sum the absolute changes in 𝑓 across

each piece, and then take the limit as the partition becomes arbitrarily fine.

For differentiable functions, the total variation has a simple integral representation. By the

mean-value theorem, for each subinterval [𝑡𝑗, 𝑡𝑗+1] there exists a point 𝑡
∗
𝑗 ∈ [𝑡𝑗, 𝑡𝑗+1]where

the derivative equals the average rate of change:

𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗)

𝑡𝑗+1 − 𝑡𝑗
= 𝑓′(𝑡∗𝑗).

Rearranging and taking absolute values gives

𝑛+1

�

𝑗=0

|𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗)| =

𝑛+1

�

𝑗=0

|𝑓′(𝑡∗𝑗)|(𝑡𝑗+1 − 𝑡𝑗).

The right-hand side is a Riemann sum for the integral of |𝑓′(𝑡)|. Taking the limit as themesh

goes to zero yields

𝑉𝑇(𝑓) = lim
‖Π‖→0

𝑛+1

�

𝑗=0

|𝑓′(𝑡∗𝑗)|(𝑡𝑗+1 − 𝑡𝑗) = �
𝑇

0

|𝑓′(𝑡)|𝑑𝑡.

Thus, for differentiable functions, total variation equals the integral of the absolute value of

the derivative—a quantity that is always finite when 𝑓′ is integrable.
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Quadratic Variation of a Function

While total variation measures the absolute distance traveled by a function, quadratic variation

measures the sum of squared changes. For a function 𝑓 over the interval [0, 𝑇], the quadratic

variation is defined as

[𝑓, 𝑓]𝑇 = lim
‖Π‖→0

𝑛+1

�

𝑗=0

(𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗))
2.

For continuously differentiable functions, the quadratic variation vanishes. To see why, we

again apply themean-value theorem: for each subinterval there exists a point 𝑡∗𝑗 ∈ [𝑡𝑗, 𝑡𝑗+1]

such that

𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗) = 𝑓′(𝑡∗𝑗)(𝑡𝑗+1 − 𝑡𝑗).

Squaring both sides and summing over all subintervals gives

𝑛+1

�

𝑗=0

(𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗))
2 =

𝑛+1

�

𝑗=0

(𝑓′(𝑡∗𝑗))
2(𝑡𝑗+1 − 𝑡𝑗)

2.

Since (𝑡𝑗+1 − 𝑡𝑗) ≤ ‖Π‖ for all 𝑗, we can factor out one power of the mesh:

𝑛+1

�

𝑗=0

(𝑓(𝑡𝑗+1) − 𝑓(𝑡𝑗))
2 ≤ ‖Π‖

𝑛+1

�

𝑗=0

(𝑓′(𝑡∗𝑗))
2(𝑡𝑗+1 − 𝑡𝑗).

The sum on the right is a Riemann sum for ∫
𝑇

0
(𝑓′(𝑡))2𝑑𝑡, which converges to this integral as

‖Π‖ → 0. Therefore,

[𝑓, 𝑓]𝑇 ≤ lim
‖Π‖→0

‖Π‖ lim
‖Π‖→0

𝑛+1

�

𝑗=0

(𝑓′(𝑡∗𝑗))
2(𝑡𝑗+1 − 𝑡𝑗) = lim

‖Π‖→0
‖Π‖�

𝑇

0

(𝑓′(𝑡))2𝑑𝑡 = 0.

In other words, for smooth functions the quadratic variation is always zero because the mesh

shrinks faster than the Riemann sum can accumulate.
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Quadratic Variation of Brownian Motion

Unlike smooth functions whose quadratic variation is zero, Brownianmotion has non-trivial

quadratic variation that accumulates linearly over time. We now prove that the quadratic

variation of Brownianmotion over [0, 𝑇] converges to 𝑇 in mean square.

Analysis

Consider a partitionΠ of [0, 𝑇] and define the quadratic variation sum:

𝑄Π =

𝑛−1

�

𝑗=0

(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)
2.

Our strategy is to show two things: first, that the expected valueof𝑄Π equals𝑇 for any partition;

second, that the variance of𝑄Π vanishes as the mesh size goes to zero. Together, these facts

imply convergence in 𝐿2(P).

Step 1: Expected value of𝑄Π.

Since each increment𝐵𝑡𝑗+1−𝐵𝑡𝑗 is normally distributedwithmean zero and variance 𝑡𝑗+1−𝑡𝑗,

we have

E(𝑄Π) =

𝑛−1

�

𝑗=0

E(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)
2 =

𝑛−1

�

𝑗=0

(𝑡𝑗+1 − 𝑡𝑗) = 𝑡𝑛 − 𝑡0 = 𝑇.

Thus, regardless of how we partition the interval, the expected quadratic variation is always

𝑇.

Step 2: Variance of𝑄Π.

To show that 𝑄Π concentrates around its mean as ‖Π‖ → 0, we compute its variance. For

a standard normal random variable 𝑍 ∼ 𝒩(0, 1), we have E(𝑍4) = 3. Since (𝐵𝑡𝑗+1 −

𝐵𝑡𝑗)/�𝑡𝑗+1 − 𝑡𝑗 ∼ 𝒩(0, 1), it follows that

V(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)
2 = E(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)

4 − �E(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)
2�

2

= 3(𝑡𝑗+1 − 𝑡𝑗)
2 − (𝑡𝑗+1 − 𝑡𝑗)

2 = 2(𝑡𝑗+1 − 𝑡𝑗)
2.
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Because Brownian increments over disjoint intervals are independent, the variance of their

sum equals the sum of their variances:

V(𝑄Π) =

𝑛−1

�

𝑗=0

V(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)
2 = 2

𝑛−1

�

𝑗=0

(𝑡𝑗+1 − 𝑡𝑗)
2.

Each difference (𝑡𝑗+1 − 𝑡𝑗) is bounded by themesh ‖Π‖, so we can write

V(𝑄Π) = 2

𝑛−1

�

𝑗=0

(𝑡𝑗+1 − 𝑡𝑗)
2 ≤ 2‖Π‖

𝑛−1

�

𝑗=0

(𝑡𝑗+1 − 𝑡𝑗) = 2‖Π‖𝑇.

As the partition is refined and ‖Π‖ → 0, the variance V(𝑄Π) also goes to zero:

lim
‖Π‖→0

V(𝑄Π) ≤ 2 lim
‖Π‖→0

‖Π‖𝑇 = 0.

Step 3: Convergence in 𝐿2(P) and in probability.

Since E(𝑄Π) = 𝑇 and V(𝑄Π) → 0, the mean-squared error converges to zero:

lim
‖Π‖→0

E(𝑄Π − 𝑇)2 = lim
‖Π‖→0

V(𝑄Π) = 0.

This is 𝐿2 convergence: 𝑄Π → 𝑇 in 𝐿2(P).

Moreover, by Chebyshev’s inequality, for any 𝜀 > 0,

P(|𝑄Π − 𝑇| > 𝜀) ≤
V(𝑄Π)

𝜀2
→ 0 as ‖Π‖ → 0.

This shows that𝑄Π converges to 𝑇 in probability: 𝑄Π
P
−→ 𝑇.

The Main Results

We see that the quadratic variation of Brownianmotion over [0, 𝑡] for any 0 ≤ 𝑡 ≤ 𝑇 equals

𝑡:

[𝐵, 𝐵]𝑡 = 𝑡.
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We observe that the differential of the quadratic variation, denoted as 𝑑[𝐵, 𝐵]𝑡, is equal to 𝑑𝑡.

This relationship is often expressed in shorthand as (𝑑𝐵)(𝑑𝐵) = 𝑑𝑡, which signifies that the

sum of the square increments of Brownianmotion behaves similarly to the sum of discrete

time intervals. In mathematical terms, this can be represented as:

�
𝑇

0

𝑑[𝐵, 𝐵]𝑡 = 𝑇.

It is important to note, however, that the squared increments (𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)
2 do not equal the

time intervals 𝑡𝑗+1 − 𝑡𝑗. This distinction arises because:

𝐵𝑡𝑗+1 − 𝐵𝑡𝑗

�𝑡𝑗+1 − 𝑡𝑗
∼ 𝒩(0, 1).

We can also establish that

lim
‖Π‖→0

𝑛−1

�

𝑗=0

(𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)(𝑡𝑗+1 − 𝑡𝑗) ≤ lim
‖Π‖→0

𝑀Π 𝑇 = 0,

and

lim
‖Π‖→0

𝑛−1

�

𝑗=0

(𝑡𝑗+1 − 𝑡𝑗)
2 ≤ lim

‖Π‖→0
‖Π‖𝑇 = 0.

These results imply that the product of the increments of Brownian motion and the corre-

sponding time intervals approaches zero, which we denote as (𝑑𝐵)(𝑑𝑡) = 0. Similarly, the

product of two infinitesimal time intervals is also zero, expressed as (𝑑𝑡)(𝑑𝑡) = 0.

Brownian Motion is Nowhere Differentiable

Furthermore, we note that

lim
‖Π‖→0

max
0≤𝑗≤𝑛−1

|𝐵𝑡𝑗+1 − 𝐵𝑡𝑗| = 0,
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which follows from the uniform continuity of the Brownianmotion over any finite interval. To

analyze the behavior of the increments, we define

𝑀Π = max
0≤𝑗≤𝑛−1

�𝐵𝑡𝑗+1 − 𝐵𝑡𝑗�, 𝑄Π =

𝑛−1

�

𝑗=0

�𝐵𝑡𝑗+1 − 𝐵𝑡𝑗�
2
.

For each increment, we have the inequality (𝐵𝑡𝑗+1 − 𝐵𝑡𝑗)
2 ≤ 𝑀Π |𝐵𝑡𝑗+1 − 𝐵𝑡𝑗|, leading to the

conclusion that
𝑛−1

�

𝑗=0

�𝐵𝑡𝑗+1 − 𝐵𝑡𝑗� ≥
𝑄Π

𝑀Π

.

As we refine the partition such that ‖Π‖ → 0, both𝑀Π → 0 and𝑄Π → 𝑇. This implies that the

total variation of Brownianmotion over the interval [0, 𝑇] is almost surely infinite.

In particular, this result indicates that Brownian paths are almost surely nowhere differentiable.

If they were differentiable at almost every point, the total variation would have to be finite.
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