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Options on Assets Paying a Dividend Yield

General Framework

The Dividend Yield

It is usually convenient to model dividends as a percentage yield paid over time. We

will denote the continuously-compounded dividend yield by 𝛿. The asset 𝑆 then pays

every instant 𝑡 a dividend of 𝛿Δ𝑡 shares and therefore 𝛿𝑆𝑡Δ𝑡 dollars. Therefore, if you

purchase one unit of the asset at time 𝑡 for 𝑆𝑡, the value of the portfolio at time 𝑡 + Δ𝑡will

be 𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡.

t t+∆t

St St+∆t + δSt∆t

t

You will notice that the payment of the dividend at time 𝑡 + Δ𝑡 is known at time 𝑡. Indeed,

this payment depends on the value of the stock at time 𝑡 and not 𝑡 + Δ𝑡. This is not a

mistake or a convenience, but reflects the fact that we want to incorporate in the total

return of investing in the stock from time 𝑡 to 𝑡 + Δ𝑡 both capital gains and dividends:

𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡 − 𝑆𝑡

𝑆𝑡�������������
Total Return

=
Δ𝑆𝑡

𝑆𝑡�
Capital Gains

+ 𝛿Δ𝑡
�

Dividends

. (1)

In practice, this is the approach used to model options on stock indices and foreign

currencies, although some practitioners also use it to model individual stocks as well.

Wemust note that specially for American type options, modelling lump-sum dividends as

a continuous yield might induce errors in computing the optimal early-exercise policy. It

could also lead to the wrong risk-neutral adjustment if dividends are paid, say, twice per

year, and we want to risk-adjust the underlying asset process for the next threemonths

just after a dividend has been paid.
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Replicating A Derivative

As we did in the previous chapter where there were no dividends, to price a call or put

optionwe take the point of viewof a trading desk thatmakes themarket for such contracts.

Their sales team just sold a European option𝐻written on a stock 𝑆with maturity 𝑇 to a

client. The stock in this case, though, pays a continuous dividend yield 𝛿.

The traders of the desk will replicate the option by buying (or selling)𝑁𝑆 units of the stock

and𝑁𝛽 units of a zero-coupon bond with face value𝐾 andmaturity 𝑇, respectively. The

difference in this case compared to the no-dividend stock is that the number of shares

bought will grow, so that the trader will have to buy a little less in order to hedge a call

option, for example.

If we call 𝑉 the value of such replicating portfolio, we have that:

𝑉𝑡 = 𝑁𝑆,𝑡𝑆𝑡 + 𝑁𝛽,𝑡𝛽𝑡. (2)

At time 𝑡+Δ𝑡, andbecause theunderlyingassetpaysdividends, the valueof the replicating

portfolio is:

𝑉𝑡+Δ𝑡 = 𝑁𝑆,𝑡(𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡) + 𝑁𝛽,𝑡𝛽𝑡+Δ𝑡,

which implies that:

Δ𝑉𝑡 = 𝑁𝑆,𝑡(Δ𝑆𝑡 + 𝛿𝑆𝑡Δ𝑡) + 𝑁𝛽,𝑡Δ𝛽𝑡.

As Δ𝑡 → 0, we have that:

𝑑𝑉 = 𝑁𝑆(d𝑆 + 𝛿𝑆 d𝑡) + 𝑁𝛽 d𝛽

= 𝑁𝑆(d𝑆 + 𝛿𝑆 d𝑡) + 𝑟(𝑁𝛽𝛽)𝑟 d𝑡

= 𝑁𝑆(d𝑆 + 𝛿𝑆 d𝑡) + 𝑟(𝑉 − 𝑁𝑆𝑆) d𝑡

= (𝑟𝑉 − (𝑟 − 𝛿)𝑁𝑆𝑆) d𝑡 + 𝑁𝑆 d𝑆,

(3)

where in the second line we used the fact that d𝛽 = 𝑟𝛽 d𝑡, and in the third line we applied

the self-financing condition (2) re-written as𝑁𝛽𝛽 = 𝑉 − 𝑁𝑆𝑆.
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As in the previous chapter, equation (3) captures the dynamics of the replicating portfolio

needed to hedge the short position. For the hedge to be successful, the dynamics of the

long position must match the dynamics of the short position that are given by:

d𝑉 =
𝜕𝑉

𝜕𝑆
d𝑆 +

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
d𝑡 +

𝜕𝑉

𝜕𝑡
d𝑡. (4)

Equating (3) and (4) shows that:

�
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+
𝜕𝑉

𝜕𝑡
� d𝑡 +

𝜕𝑉

𝜕𝑆
d𝑆 = (𝑟𝑉 − (𝑟 − 𝛿)𝑁𝑆𝑆) d𝑡 + 𝑁𝑆 d𝑆. (5)

Equation (5) reveals that, even in the presence of a dividend yield, the number of shares

required to hedge the optionmust equal the partial derivative with respect to the stock

price. Therefore, choosing𝑁𝑆 =
𝜕𝑉

𝜕𝑆
implies that:

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ (𝑟 − 𝛿)𝑆

𝜕𝑉

𝜕𝑆
+
𝜕𝑉

𝜕𝑡
− 𝑟𝑉 = 0 (6)

with boundary condition 𝑉𝑇 = 𝐹(𝑆𝑇).

Equation (6) is the Black-Scholes partial differential equation (PDE) that must satisfy all

derivatives written on an asset that pays a dividend yield.1

Example 1. Consider a forward contract written on an asset that pays a dividend yield

𝑞 expiring at time 𝑇 with forward price 𝐾. The value 𝑉 of the forward contract at time

0 ≤ 𝑡 ≤ 𝑇 is:

𝑉 = 𝑆𝑒−𝛿(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)

Let us check that the value of the contract satisfies the Black-Scholes PDE equation (6).

1The Black-Scholes PDE given by (6) is only valid for derivative instruments (or assets) that do not pay

dividends themselves, even though they are written on a dividend paying asset. The stock, for example,

does not satisfy equation (6) since it pays a dividend. A generalized PDE that allows for the derivative to

also pay a dividend yield can be found in the appendix.
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The relevant derivatives are

𝜕𝑉

𝜕𝑆
= 𝑒−𝛿(𝑇−𝑡),

𝜕2𝑉

𝜕𝑆2
= 0,

𝜕𝑉

𝜕𝑡
= 𝛿𝑆𝑒−𝛿(𝑇−𝑡) − 𝑟𝐾𝑒−𝑟(𝑇−𝑡).

The left-hand side of equation (6) then becomes

(𝑟 − 𝛿)𝑆𝑒−𝛿(𝑇−𝑡) + 𝛿𝑆𝑒−𝛿(𝑇−𝑡) − 𝑟𝐾𝑒−𝑟(𝑇−𝑡) − 𝑟(𝑆𝑒−𝛿(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)) = 0,

which clearly satisfy the claim.

The Risk-Neutral Process for the Underlying Asset

As in the Black-Scholesmodel, the replication argument is indifferent of the dynamics

of the stock. This implies that the same logic should work in a hypothetical world where

everyone is risk-neutral. In such a world, the expected total return of all assets is the

risk-free rate. Hence, equation (1) implies that:

𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡 − 𝑆𝑡

𝑆𝑡
=
Δ𝑆𝑡

𝑆𝑡
+ 𝛿Δ𝑡 = 𝑟Δ𝑡 + 𝜎Δ𝐵∗

𝑡 .

As Δ𝑡 → 0we obtain the continuous-time analog of risk-neutral process followed by the

stock:

d𝑆 = (𝑟 − 𝛿)𝑆 d𝑡 + 𝜎𝑆 d𝐵∗.

We conclude that 𝑆 follows a GBM under the risk-neutral measure with drift 𝑟 − 𝛿 and

volatility 𝜎.

Example 2. We can use the risk-neutral approach to compute the value 𝑉 of a long

forward contract with maturity 𝑇 and forward price𝐾. The payoff of the long forward at

maturity is given by 𝑆𝑇 − 𝐾.
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The value of the contract is then the expected payoff discounted at the risk-free rate, i.e.,

𝑉 = 𝑒−𝑟𝑇 E∗(𝑆𝑇 − 𝐾)

= 𝑒−𝑟𝑇(𝑆𝑒(𝑟−𝛿)𝑇 − 𝐾)

= 𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇.

The value of the forward, in general, will change over time. The forward price 𝐹 is deter-

mined such that the value of the contract is zero when the contract is signed. Thus,

𝑉 = 𝑆𝑒−𝛿𝑇 − 𝐹𝑒−𝑟𝑇 = 0 ⇒ 𝐹 = 𝑆𝑒(𝑟−𝛿)𝑇.

Remember that under the risk-neutral measure, the value of any asset is computed as

its expected payoff discounted at the risk-free rate. Therefore, the price of a European

call option with maturity 𝑇 and strike price𝐾written on the asset that pays a continuous

dividend yield 𝑞 is given by:

𝐶 = 𝑒−𝑟𝑇 E∗ �(𝑆𝑇 − 𝐾)1{𝑆𝑇>𝐾}�

= 𝑒−𝑟𝑇 E∗ �𝑆𝑇1{𝑆𝑇>𝐾}� − 𝑒−𝑟𝑇 E �𝐾1{𝑆𝑇>𝐾}�

= 𝑆𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2),

where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 − 𝛿 +

1

2
𝜎2)𝑇

𝜎√𝑇
,

𝑑2 = 𝑑1 − 𝜎√𝑇.

Note that, even though the risk-free rate is positive, the time-value of deep ITMcall options

is now negative due to the positive dividend yield. Indeed, the lower bound asymptote has

a slope coefficient less than one, making the option price to cross the option’s intrinsic

value.

Consider now a European put option with the same characteristics as the previous call.
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Figure 1: The figure displays the Black-Scholes call premium 𝐶(𝑆) where 𝑟 = 0.05, 𝛿 = 0.08,

𝜎 = 0.45,𝑇 = 1and𝐾 = 100. It also shows the call option payoff givenbymax(𝑆−𝐾, 0)

and the lower bound for a European call given bymax(𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇, 0).
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According to put-call parity, it must be the case that

𝐶 − 𝑃 = 𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇.

Hence,

𝑃 = 𝐶 − (𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇)

= 𝑆𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2) − (𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇)

= 𝐾𝑒−𝑟𝑇(1 − Φ(𝑑2)) − 𝑆𝑒−𝛿𝑇(1 − Φ(𝑑1))

= 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆𝑒−𝛿𝑇Φ(−𝑑1).
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Figure 2: The figure displays the Black-Scholes put premium 𝑃(𝑆) where 𝑟 = 0.05, 𝛿 = 0.08,

𝜎 = 0.45,𝑇 = 1 and𝐾 = 100. It also shows the put option payoff given bymax(𝐾−𝑆, 0)

and the lower bound for a European put given bymax(𝐾𝑒−𝑟𝑇 − 𝑆𝑒−𝛿𝑇, 0).

Example 3. A stock that pays a continuous dividend yield of 8% currently trades for $100.

The instantaneous volatility of returns is 30% per year and the risk-free rate is 5% per year,

continuously compounded and constant for all maturities. Consider ATM call and put
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options written on the stock with maturity 10 months. Then,

𝑑1 =
ln(100/100) + (0.05 − 0.08 + 0.5(0.30)2)(10/12)

0.30�10/12
= 0.0456,

𝑑2 = 0.0456 − 0.30�10/12 = −0.2282.

Therefore,Φ(𝑑1) = 0.5182 andΦ(𝑑2) = 0.4097, which implies that

𝐶 = 100𝑒−0.08(10/12)(0.5182) − 100𝑒−0.05(10/12)(0.4097) = $9.18,

𝑃 = 100𝑒−0.05(10/12)(1 − 0.4097) − 100𝑒−0.08(10/12)(1 − 0.5182) = $11.54.

For an asset that a pays a continuous dividend yield 𝛿, we have that for a European call

option:
𝜕𝐶

𝜕𝑆
= 𝑒−𝛿𝑇Φ(𝑑1).

We can see that if 𝛿 > 0, the number of shares required to hedge the call is lower than in

the case of a non-dividend paying asset. The shares that you buy to hedge the call grow

over time at the rate 𝛿, whichmeans that you need to buy less.

Similarly, for a European put option we have that

𝜕𝑃

𝜕𝑆
= −𝑒−𝛿𝑇Φ(−𝑑1).

Example4. In thepreviousexample,we found thatΦ(𝑑1) = 0.5182andΦ(𝑑2) = 0.4097.

Hence,
𝜕𝐶

𝜕𝑆
= 𝑒−0.08(10/12)(0.5182) = 0.4848,

𝜕𝑃

𝜕𝑆
= −𝑒−0.08(10/12)(1 − 0.5182) = −0.4507.

This means that an OTC dealer who sells a call option needs to buy 0.4848 units of the

asset while borrowing

100𝑒−0.05(10/12)(0.4097) = $39.30
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at the risk-free rate. To hedge a put option, the dealer needs to short-sell 0.4507 units of

the asset and invest

100𝑒−0.05(10/12)(1 − 0.4097) = $56.62

in the money-market account.

Black-Scholes Model for a Stock that Pays a Dividend Yield

Consider a stock 𝑆 that pays a continuous dividend yield 𝛿 and that follows a GBM

under the risk-neutral measure:

d𝑆 = (𝑟 − 𝛿)𝑆 d𝑡 + 𝜎𝑆 d𝐵∗.

The price of European call and put options with strike price𝐾 and time-to-maturity

𝑇 are given by:

𝐶 = 𝑆𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2),

𝑃 = 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆𝑒−𝛿𝑇Φ(−𝑑1),

where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 − 𝛿 +

1

2
𝜎2)𝑇

𝜎√𝑇
,

𝑑2 = 𝑑1 − 𝜎√𝑇.

Furthermore, the delta of the call is given by 𝑒−𝛿𝑇Φ(𝑑1)whereas the delta of the

put is computed as−𝑒−𝛿𝑇Φ(−𝑑1).

Options on Indices

Options on Stock Indices

Most stock indices such as the S&P 500 (SPX) do not reinvest their dividends. Hence, to

replicate an option written on the index we can use a portfolio of stocks that mimics the

value of the index and that will pay a dividend yield over time. We will assume that the
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replicating portfolio exactly matches the composition of the index at any point in time so

that 𝑆𝑡 represents both the value of the index and of the tracking portfolio.

SPX Options

SPX options are one of the most liquid option contracts in the world. They have the

following characteristics:

• European style exercise

• Cash settled

• Each contract is written on 100 times the value of the index

There are alsomini-SPX index options written over XSP which is an index 10 times smaller

than SPX. More information can be found at https://cdn.cboe.com/resources/spx/spx-

fact-sheet.pdf.

Example 5. The SPX index is currently at 4,251, has a dividend yield of 1.33%per year and

an instantaneous volatility of 17% per year. The risk-free rate is 3% per year, continuously

compounded and constant for all maturities. Say we want to compute the price of an SPX

call option contract with maturity 3 months and strike 4,300. Then,

𝑑1 =
ln(4251/4300) + (0.03 − 0.0133 + 0.5(0.17)2)(3/12)

0.17�3/12
= −0.0432,

𝑑2 = −0.0432 − 0.17�10/12 = −0.1282.

Hence,Φ(𝑑1) = 0.4828 andΦ(𝑑2) = 0.4490, which implies that:

𝐶 = 4, 251𝑒−0.0133(3/12)(0.4828) − 4, 300𝑒−0.03(3/12)(0.4490) = $129.193.

Therefore, a standard SPX call option contract should cost $12,919.30, whereas amini-

SPX call option contract should trade for $1,291.93.
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Appendix

General PDE for Dividend-Paying Derivatives

Consider a derivative𝐻expiring at time𝑇andwrittenonanasset that pays adividend yield

𝛿𝑆. Let us assume that the derivative itself also pays a dividend yield 𝛿𝐻. The risk-neutral

process for the stock is given by:

d𝑆 = (𝑟 − 𝛿𝑆)𝑆 d𝑡 + 𝜎𝑆𝑆 d𝐵
∗,

whereas the risk-neutral process of the derivative is given by

d𝐻 = (𝑟 − 𝛿𝐻)𝐻 d𝑡 + 𝜎𝐻𝐻 d𝐵∗. (7)

Moreover, according to Ito’s lemma, the risk-neutral process of the derivative must also

satisfy:

𝑑𝐻 =
𝜕𝐻

𝜕𝑆
d𝑆 +

1

2

𝜕2𝐻

𝜕𝑆2
(d𝑆)2 +

𝜕𝐻

𝜕𝑡
d𝑡

= �
1

2
𝜎2𝑆2

𝜕2𝐻

𝜕𝑆2
+ (𝑟 − 𝛿𝑆)𝑆

𝜕𝐻

𝜕𝑆
+
𝜕𝐻

𝜕𝑡
� d𝑡 + 𝜎𝑆

𝜕𝐻

𝜕𝑆
d𝐵∗.

(8)

Since the drift in (7) and (8) is the same, we have that

1

2
𝜎2𝑆2

𝜕2𝐻

𝜕𝑆2
+ (𝑟 − 𝛿𝑆)𝑆

𝜕𝐻

𝜕𝑆
+
𝜕𝐻

𝜕𝑡
− (𝑟 − 𝛿𝐻)𝐻 = 0. (9)

In particular, the stock itself satisfies (9) if we take𝐻(𝑆) = 𝑆 and 𝛿𝐻 = 𝛿𝑆.

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin5241-fall25b.

Problem 1. Calculate the value of a three-month at-the-money European call option on

a stock index when the index is at 250, the risk-free interest rate is 10% per annum, the
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volatility of the index is 18% per annum, and the dividend yield on the index is 3% per

annum.

Problem 2. The S&P 100 index currently stands at 696 and has a volatility of 30% per

annum. The risk-free rate of interest is 7% per annum and the index provides a dividend

yield of 4% per annum. Calculate the value of a three-month European put with strike

price 700.
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