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Modeling Stock Prices in Continuous-Time

Stochastic Processes

Astochasticprocessdescribes theevolutionof a randomvariableover time. Infinance,we

use stochastic processes to model the evolution of stock prices, interest rates, volatility,

foreign exchange rates, and commodity prices. We distinguish between:

• Discrete-time processes: The values of the process {𝑆𝑛} are allowed to change only

at discrete time intervals, i.e., 𝑛 ∈ {0, 1, 2, … , 𝑁} or 𝑛 ∈ ℕ.

• Continuous-time processes: The stochastic process {𝑆𝑡} is defined for all 𝑡 ∈ [0, 𝑇].

Wewill now consider several stochastic processes commonly used tomodel the future

evolution of the price of an asset such as a stock. We start by understanding discrete-

time processes and then extend the analysis to include continuous-time processes. The

analysis is informal, as the theory of stochastic process in continuous time requires

advancedmathematical concepts, which is beyond the scope of these notes.

It is essential to realize that a stochastic process for a stock price is trying tomodel all

possible histories between now and a specific time in the future. A sample path is one of

the many possible histories generated using the stochastic process.

Random Walks

Wewill now study one of the simplest yet most intriguing stochastic processes defined in

discrete time. A one-dimensional randomwalk {𝑋𝑛} is a stochastic process defined as

𝑋0 = 𝑥0,

𝑋𝑛+1 = 𝑋𝑛 + 𝑒𝑛+1,
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where {𝑒𝑛} are independent and identically distributed (i.i.d.) random variables such that

E(𝑒𝑛) = 0 for all 𝑛 ≥ 1.Note that 𝑒𝑛 need not be normally distributed. For example, for

each 𝑛, the variable 𝑒𝑛 could take the values 1 and -1 with equal probability. A random

walk only requires that the shocks 𝑒𝑛 are independent.

Figure 1: The figure plots simulated paths for the randomwalk defined as 𝑋0 = 0, 𝑋𝑛+1 = 𝑋𝑛 +

𝑒𝑛+1, where {𝑒𝑛} is an i.i.d sequence taking the values 1 and−1with equal probability,

and 1 ≤ 𝑛 ≤ 5000.

An essential property of a randomwalk is that its sample paths diverge as𝑛 grows. Indeed,

we have

𝑋𝑛 = 𝑋𝑛−1 + 𝑒𝑛

= 𝑋𝑛−2 + 𝑒𝑛−1 + 𝑒𝑛

⋮

= 𝑋0 + 𝑒1 +⋯+ 𝑒𝑛−1 + 𝑒𝑛

= 𝑋0 +

𝑛

�

𝑖=1

𝑒𝑖.
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Denoting V(𝑒𝑛) = 𝜎2, and since we have that {𝑒𝑛} are independent, we have

V(𝑋𝑛) = 𝑛𝜎2.

Therefore, the variance of 𝑋𝑛 increases linearly with 𝑛 as 𝑛 → ∞.

Intuitively, this is saying that if we simulate many different sample paths for 𝑛 = 0,… ,𝑁

where 𝑁 is very large, we should expect to see some values of 𝑋𝑁 to be very high and

positive whereas others will be significantly negative.

Brownian Motion

A very useful randomwalk can be defined as follows:

𝐵𝑡+Δ𝑡 = 𝐵𝑡 + √Δ𝑡𝑒𝑡+Δ𝑡,

where 𝐵0 = 0 and {𝑒𝑡} are i.i.d. such that 𝑒𝑡 ∼ 𝑁(0, 1). Note that here time increases

each step by Δ𝑡. Letting Δ𝑡 → 0, the resulting process {𝐵𝑡} for 𝑡 ∈ [0, 𝑇] is called a

Brownianmotion or Wiener process.

The Brownianmotion has the following properties:

• The sample paths are continuous.

• For 𝑠 < 𝑡, the increment 𝐵𝑡 − 𝐵𝑠 ∼ 𝑁(0, 𝑡 − 𝑠), i.e. is normally distributed with

mean 0 and variance 𝑡 − 𝑠.

• Increments are independent of each other.

• In particular, note that 𝐵𝑡 ∼ 𝑁(0, 𝑡) for 0 < 𝑡 ≤ 𝑇.
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Figure 2: The figure plots simulated paths for {𝐵𝑡}where 0 ≤ 𝑡 ≤ 10.

Geometric Brownian Motion

Nowwe turn our attention to modeling stock prices {𝑆𝑡}. We need to be careful, though,

as stock prices cannot be negative. We also would like to allow themodel to display a

certain drift 𝜇 and volatility 𝜎.

To achieve this, wemodel the percentage change of a stock price between 𝑡 and 𝑡 + Δ𝑡

as
Δ𝑆𝑡

𝑆𝑡
= 𝜇Δ𝑡 + 𝜎Δ𝐵𝑡.

Note that the percentage change in price over an interval Δ𝑡 is normally distributed with

mean 𝜇Δ𝑡 and variance 𝜎2Δ𝑡. Letting Δ𝑡 → 0, the resulting process {𝑆𝑡} for 𝑡 ∈ [0, 𝑇] is

called a geometric Brownianmotion (GBM).
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Figure 3: The figure plots simulated paths for a geometric Brownianmotion {𝑆𝑡}where0 ≤ 𝑡 ≤ 10,

𝑆0 = 100, 𝜇 = 0.20, and 𝜎 = 0.20. The dashed line denotes E (𝑆𝑡) = 𝑆0𝑒
𝜇𝑡.

Stochastic Calculus

Once we have defined how 𝑆𝑡 behaves over time, we now turn our attention tomodel how

a function of 𝑆𝑡 behaves over time. The reason why we are interested in this is because

we want to find a way to price derivatives as a function of the relevant state variables. We

will see later that when the stock price is driven by a single source of uncertainty, then the

value of a call or put option depends only on the stock price itself and time-to-maturity,

i.e. the price of the derivative when the stock price is 𝑆 and the time-to-maturity is 𝑇will

be of the form 𝐹(𝑆, 𝑇).

We will start studying how 𝑋𝑡 = 𝐹(𝑆𝑡) behaves over time and we will add later the time

dimension to the problem. In what follows we assume that 𝐹(⋅) is a smooth function

such that its first and second derivatives exist.
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Ito’s Lemma

Remember that the Brownianmotion increment is defined

Δ𝐵𝑡 = 𝐵𝑡+Δ𝑡 − 𝐵𝑡 = √Δ𝑡𝑒𝑡+Δ𝑡.

Consider a GBM process {𝑆𝑡} and a smooth function 𝐹(⋅). A second order Taylor approxi-

mation around 𝑆𝑡 implies

𝐹(𝑆𝑡 + Δ𝑆𝑡) ≈ 𝐹(𝑆𝑡) + 𝐹′(𝑆𝑡)(Δ𝑆𝑡) +
1

2
𝐹″(𝑆𝑡)(Δ𝑆𝑡)

2.

Using the results derived in the appendix, we have that

(Δ𝑆𝑡)
2 = (𝜇𝑆𝑡Δ𝑡 + 𝜎𝑆𝑡Δ𝐵𝑡)

2

= (𝜇𝑆𝑡)
2 (Δ𝑡)2���

≈0

+2𝜇𝜎(𝑆𝑡)
2 (Δ𝑡)(Δ𝐵𝑡)�������

≈0

+(𝜎𝑆𝑡)
2 (Δ𝐵𝑡)

2
�����
≈Δ𝑡

≈ 𝜎2𝑆2𝑡 Δ𝑡.

We can finally conclude that

Δ𝐹(𝑆𝑡) ≈ �𝜇𝑆𝑡𝐹
′(𝑆𝑡) +

1

2
𝜎2𝑆2𝑡 𝐹

″(𝑆𝑡)� Δ𝑡 + 𝜎𝑆𝑡𝐹
′(𝑆𝑡)Δ𝐵𝑡.

The continuous-time analog of the previous analysis is as follows.

Ito’s Lemma for GBM

Consider a GBM process {𝑆𝑡} given by

d𝑆 = 𝜇𝑆 d𝑡 + 𝜎𝑆 d𝐵, (1)

and a twice-differentiable function 𝐹(𝑆). Then we have

d𝐹 = �𝜇𝑆𝐹′(𝑆) +
1

2
𝜎2𝑆2𝐹″(𝑆)� d𝑡 + 𝜎𝑆𝐹′(𝑆) d𝐵.
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It is usually more convenient to use the box calculus when working with stochastic pro-

cesses defined through Brownianmotions.

Box Calculus

Consider theGBMprocess {𝑆𝑡}defined in (1). Thebox calculus rules for Itoprocesses

are:

(d𝑡)2 = 0,

(d𝑡)(d𝐵) = (d𝐵)(d𝑡) = 0,

(d𝐵)2 = d𝑡.

Furthermore, denote 𝐹𝑆 = 𝐹′(𝑆) and 𝐹𝑆𝑆 = 𝐹″(𝑆). Ito’s Lemma can then be restated

as

d𝐹 = 𝐹𝑆 d𝑆 +
1

2
𝐹𝑆𝑆(d𝑆)

2,

where

(d𝑆)2 = (𝜇𝑆 d𝑡 + 𝜎𝑆 d𝐵)2 = 𝜎2𝑆2 d𝑡.

Solving for GBM

Define𝑋 = ln(𝑆), which implies 𝑆 = 𝑒𝑋. We have that 𝐹𝑆 = 1/𝑆 and 𝐹𝑆𝑆 = −1/𝑆2, which

implies

𝑑𝑋 = 𝐹𝑆 d𝑆 +
1

2
𝐹𝑆𝑆(d𝑆)

2

=
1

𝑆
(𝜇𝑆 d𝑡 + 𝜎𝑆 d𝐵) +

1

2
�−

1

𝑆2
�𝜎2𝑆2 d𝑡

= (𝜇 d𝑡 + 𝜎 d𝐵) −
1

2
𝜎2 d𝑡

= �𝜇 −
1

2
𝜎2� d𝑡 + 𝜎 d𝐵.

We can then solve for 𝑋𝑇:

𝑋𝑇 − 𝑋0 = �
𝑇

0

𝑑𝑋 = �
𝑇

0

�𝜇 −
1

2
𝜎2� d𝑡 + �

𝑇

0

𝜎 d𝐵

= �𝜇 −
1

2
𝜎2�𝑇 + 𝜎𝐵𝑇,
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and conclude that

𝑆𝑇 = 𝑆0 exp��𝜇 −
1

2
𝜎2�𝑇 + 𝜎𝐵𝑇� . (2)

Properties of Stock Prices Following a GBM

Equation (2) can be rewritten as:

ln(𝑆𝑇) = ln(𝑆0) + �𝜇 −
1

2
𝜎2�𝑇 + 𝜎𝐵𝑇.

We can conclude that ln(𝑆𝑇) ∼ 𝑁(𝑚, 𝑠2), where

𝑚 = ln(𝑆0) + �𝜇 −
1

2
𝜎2�𝑇,

𝑠 = 𝜎√𝑇.

In other words, 𝑆𝑇 is lognormally distributed with mean𝑚 and variance 𝑠2.

Example 1. Consider a stock whose price at time 𝑡 is given by 𝑆𝑡 and that follows a GBM.

The expected return is 12% per year and the volatility is 25% per year. The current spot

price is $25. If we denote 𝑋𝑇 = ln(𝑆𝑇) and take 𝑇 = 0.5, we have that:

E(𝑋𝑇) = ln(25) + �0.12 − 0.5(0.25)2� (0.5) = 3.2633,

SD(𝑋𝑇) = 0.25√0.5 = 0.1768.

Hence, the 95% confidence interval for 𝑆𝑇 is given by:

[𝑒3.2633−1.96(0.1768), 𝑒3.2633+1.96(0.1768)] = [18.48, 36.96].

Therefore, there is a 95% probability that the stock price in 6 months will lie between

$18.48 and $36.96.
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Moments of the Stock Price

The fact that the stock price at time 𝑇 is log-normally distributed allows us to compute

themean and standard deviation of 𝑆𝑇.

Moments of the Stock Price

The expectation and standard deviation of 𝑆𝑇 are given by:

E(𝑆𝑇) = 𝑆0𝑒
𝜇𝑇,

SD(𝑆𝑇) = 𝐸(𝑆𝑇)�𝑒
𝜎2𝑇 − 1.

Proof

Since ln(𝑆𝑇) ∼ 𝒩(𝑚, 𝑠2), we can compute its moments using the results derived earlier

so that

E(𝑆𝑇) = 𝑒
𝑚+

1

2
𝑠2
= 𝑒

ln(𝑆0)+�𝜇−
1

2
𝜎2�𝑇+

1

2
𝜎2𝑇

= 𝑒ln(𝑆0)𝑒𝜇𝑇 = 𝑆0𝑒
𝜇𝑇.

In this model, the expected stock price at any point in the future is just the current stock

price growing at the rate 𝜇 for 𝑇 years.

Therefore, the expected stock price grows at a rate 𝜇. The variance of 𝑆𝑇, however, is large

and increases exponentially with time.

Example 2. Consider a stock whose price at time 𝑡 is given by 𝑆𝑡 and that follows a GBM.

The expected return is 12% per year and the volatility is 25% per year. The current spot

price is $25. The expected price and standard deviation 6months from now are:

E(𝑆𝑇) = 25𝑒0.12(0.5) = $26.55,

SD(𝑆𝑇) = 26.55�𝑒0.25
2(0.5) − 1 = $4.73.
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A Generalized Form of Ito’s Lemma

Most derivatives not only depend on the underlying asset but also depend on time since

they have fixed expiration dates. The analysis we did before for Ito’s Lemma generalizes

easily to handle this case. Consider a non-dividend paying stock that follows a GBM:

d𝑆 = 𝜇𝑆 d𝑡 + 𝜎𝑆 d𝐵,

and a smooth function 𝐹(𝑆, 𝑡). Ito’s Lemma in this case applies in the following form:

d𝐹 = 𝐹𝑆 d𝑆 +
1

2
𝐹𝑆𝑆(d𝑆)

2 + 𝐹𝑡 d𝑡,

where (d𝑆)2 = 𝜎2𝑆2 d𝑡.

Appendix

Some Intuition on Brownian Motion

Remember that we defined the Brownian motion or Wiener process as a randomwalk

driven by normally distributed shocks:

𝐵𝑡+Δ𝑡 = 𝐵𝑡 + √Δ𝑡𝑒𝑡+Δ𝑡,

where {𝑒𝑡} is an i.i.d. sequence of random variables distributed𝒩(0, 1).

Let’s start by splitting the interval [0, 𝑇] into 𝑛 intervals of length Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖.

t0 = 0 t1 t2 tn−1 tn = T

Bt0 Bt1 Bt2 . . . Btn−2 Btn−1

t

Note that 𝑡𝑖 = 𝑖Δ𝑡 and 𝑇 = 𝑡𝑛 = 𝑛Δ𝑡. The Brownianmotion increments are then defined

as Δ𝐵𝑡𝑖 = 𝐵𝑡𝑖+1 − 𝐵𝑡𝑖 .
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The first question onemight have is why using normally distributed increments. There

are two answers for that. First, a sum of normally distributed random variables is also

normal and in this case we have:

𝐵𝑇 − 𝐵0 =

𝑛−1

�

𝑖=0

Δ𝐵𝑡𝑖 =

𝑛−1

�

𝑖=0

√Δ𝑡𝑒𝑡+Δ𝑡.

The variance of∑
𝑛−1
𝑖=0 √Δ𝑡𝑒𝑡+Δ𝑡 is given by∑

𝑛−1
𝑖=0 Δ𝑡 = 𝑛Δ𝑡 = 𝑇, which implies that 𝐵𝑇 ∼

𝒩(0, 𝑇). So by using normally distributed increments we guarantee that the resulting

process for Brownianmotion is also normal.

Second, imagine that we use a different distribution for the i.i.d. increments while still

requiring E(𝑒𝑡) = 0 and V(𝑒𝑡) = 1. For example, 𝑒𝑡 could take the values 1 and−1with

equal probability. Nevertheless, the central limit theorem guarantees that:

√𝑛�
1

𝑛

𝑛−1

�

𝑖=0

√Δ𝑡𝑒𝑡+Δ𝑡�
𝑑
−→ 𝒩(0, Δ𝑡).

In other words, even if we use a different distribution for the increments, as 𝑛 → ∞we

have that 𝐵𝑇 ∼ 𝒩(0, 𝑇). Therefore, there is no loss in generality in assuming normally

distributed increments for the Brownianmotion.

A second question that onemight have, and one of the most puzzling facts in stochastic

calculus in my opinion, is the fact that when we apply Ito’s lemmawe use the fact that

(𝑑𝐵𝑡)
2 = d𝑡.Clearly, (Δ𝐵𝑡)

2 = Δ𝑡𝑒2𝑡 ≠ Δ𝑡where 𝑒𝑡 ∼ 𝒩(0, 1). Indeed, if Δ𝐵𝑡 is random,

then (Δ𝐵𝑡)
2 must also be random. However, we will see in a moment that it is fine to say

that (Δ𝐵𝑡)
2 ≈ Δ𝑡 as Δ𝑡 → 0.
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Let’s start by computing the mean and variance of (Δ𝐵𝑡)
2:

E �(Δ𝐵𝑡)
2� = Δ𝑡

V �(Δ𝐵𝑡)
2� = E �(Δ𝐵𝑡)

4� − �E �(Δ𝐵𝑡)
2��

2

= 3(Δ𝑡)2 − (Δ𝑡)2

= 2(Δ𝑡)2.

In computing the variance of (Δ𝐵𝑡)
2 we used the fact that if 𝑋 ∼ 𝒩(0, 𝜎2), then E(𝑋4) =

3𝜎4. Since Δ𝐵𝑡 ∼ 𝒩(0, Δ𝑡), we have that E �(Δ𝐵𝑡)
4� = 3(Δ𝑡)2.

Consider now the following sum:

𝑆𝑛 =

𝑛−1

�

𝑖=0

(Δ𝐵𝑡𝑖)
2.

Clearly, 𝑆𝑛 is a sum of 𝑛 independent random variables so its variance is the sum of the

variance of each Δ𝐵𝑡 ∶

E(𝑆𝑛) = 𝑛Δ𝑡 = 𝑇

V(𝑆𝑛) = 𝑛(2(Δ𝑡)2) =
2𝑇2

𝑛
.

Since lim𝑛→∞ V(𝑆𝑛) = 0, we have that 𝑆𝑛 → 𝑇 as 𝑛 → ∞ in probability. Intuitively, the

previous result is really the weak-law of large numbers since we can re-write it as
𝑆𝑛

𝑛
→ Δ𝑡

as 𝑛 → ∞ in probability. However, when you apply the weak-law of large numbers to an

arbitrary sequence of i.i.d. random variables, you cannot say that you can approximate

each random variable by its mean just because its average converges to their mean. In

our case, since the variance of (Δ𝐵𝑡)
2 is so small compared to itsmean, we can safely say

that (Δ𝐵𝑡)
2 behaves as if (Δ𝐵𝑡)

2 = Δ𝑡 as𝑛 → ∞. In otherwords, we have that (Δ𝐵𝑡)
2 ≈ Δ𝑡

for small Δ𝑡.
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We can apply the same analysis to study the behavior of (Δ𝑡)(Δ𝐵𝑡) as Δ𝑡 → 0. Since:

E [(Δ𝑡)(Δ𝐵𝑡)] = 0

V [(Δ𝑡)(Δ𝐵𝑡)] = E �((Δ𝑡)(Δ𝐵𝑡))
2� − (E[(Δ𝑡)(Δ𝐵𝑡)])

2

= (Δ𝑡)2 E[(Δ𝐵𝑡)
2] − ((Δ𝑡) E[Δ𝐵𝑡])

2

= (Δ𝑡)3.

Consider now the following sum:

𝐶𝑛 =

𝑛−1

�

𝑖=0

(Δ𝑡)(Δ𝐵𝑡𝑖).

Themean and variance of 𝐶𝑛 are given by:

E(𝐶𝑛) = 0

V(𝐶𝑛) =
𝑇3

𝑛2
.

Since lim𝑛→∞ V(𝐶𝑛) = 0, we have that 𝐶𝑛 → 0 as 𝑛 → ∞ in probability, implying that

(Δ𝑡)(Δ𝐵𝑡) ≈ 0 for small Δ𝑡.

Computing Partial Expectations

Since ln(𝑆𝑇) ∼ 𝒩(𝑚, 𝑠2), we can use the result introduced earlier about partial expecta-

tions to show the following property.
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Partial Expectations of the Stock Price

Consider a non-dividend paying stock that follows a GBM as defined in 1. Then we

have that:

E �𝑆𝑇1{𝑆𝑇>𝐾}� = 𝑆0𝑒
𝜇𝑇Φ�

ln(𝑆0/𝐾) + (𝜇 +
1

2
𝜎2)𝑇

𝜎√𝑇
� ,

E �𝐾1{𝑆𝑇>𝐾}� = 𝐾Φ�
ln(𝑆0/𝐾) + (𝜇 −

1

2
𝜎2)𝑇

𝜎√𝑇
� .

Proof

E �𝑆𝑇1{𝑆𝑇>𝐾}� = 𝑒
𝑚+

1

2
𝑠2
Φ�

𝑚 + 𝑠2 − ln(𝐾)

𝑠
�

= 𝑆0𝑒
𝜇𝑇Φ�

ln(𝑆0/𝐾) + (𝜇 +
1

2
𝜎2)𝑇

𝜎√𝑇
� ,

E �𝐾1{𝑆𝑇>𝐾}� = 𝐾Φ�
𝑚 − ln(𝐾)

𝑠
�

= 𝐾Φ�
ln(𝑆0/𝐾) + (𝜇 −

1

2
𝜎2)𝑇

𝜎√𝑇
� .

It turns out that these results are everything we need in order to derive the Black-Scholes

pricing formulas!

Martingales

Amartingale is a process closely related to the randomwalk but slightly more general. A

discrete-timemartingale {𝑍𝑛}𝑛≥0 is a stochastic process such that:

E (𝑍𝑛+1 | 𝑍0, 𝑍1, … , 𝑍𝑛) = 𝑍𝑛.
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Intuitively, the history of the process {𝑍𝑛} is irrelevant to forecast 𝑍𝑛+1. The current

value of 𝑍𝑛 is the only thing that matters. A randomwalk is a martingale, but note that a

martingale need not be a randomwalk.

For example, consider the process {𝑍𝑛}:

𝑍𝑛+1 = 𝑍𝑛𝜀𝑛+1,

where {𝜀𝑛} is an i.i.d. sequence such that E (𝜀𝑛) = 1 for all 𝑛 ≥ 0. It is a martingale

since:

E (𝑍𝑛+1 | 𝑍1, 𝑍2, … , 𝑍𝑛) = E (𝑍𝑛𝜀𝑛+1 | 𝑍𝑛) ,

= 𝑍𝑛 E (𝜀𝑛+1 | 𝑍𝑛) ,

= 𝑍𝑛.

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin5241-fall25b.

Problem 1. Consider a stock whose price at time 𝑡 is given by 𝑆𝑡 and that follows a

geometric Brownian motion (GBM). The expected return is 18% per year and the volatility

is 32% per year. The current spot price is $60.

a. Compute the expected price 9months from now.

b. Compute themean and standard deviation of the log-spot price 9months from now.

c. Compute the 95% confidence interval of ln(𝑆𝑇) 9-months from now, and report the

corresponding values for 𝑆𝑇.

Problem 2. Consider a stock whose price at time 𝑡 is given by 𝑆𝑡 and that follows a GBM.

The expected return is 11% per year and the volatility is 27% per year. The current spot

price is $60.

a. Compute the expected price of 𝑆𝑡 1 year from now.

b. Compute the expected price of 1/𝑆𝑡 1 year from now.
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Problem 3. Consider a stock whose price at time 𝑡 is given by 𝑆𝑡 and that follows a GBM.

The expected return is 12% per year and the volatility is 35% per year. The current spot

price is $55. Let 𝑇 = 18months.

a. Compute E(𝑆𝑇).

b. Compute themean and standard deviation of the log-spot price at 𝑇.

c. Find 𝐶 such that P(𝑆𝑇 ≤ 𝐶) = 0.01.

Problem 4. Consider a stock whose price at time 𝑇 is given by 𝑆𝑇 and that follows a GBM,

i.e.,

ln(𝑆𝑇) ∼ 𝒩(ln(𝑆0) + (𝜇 − 0.5𝜎2)𝑇, 𝜎2𝑇).

The expected return is 12% per year and the volatility is 35% per year. The current spot

price is $100.

a. Compute the expected price in 2 years from now.

b. Compute themean and standard deviation of the log-spot price in 2 years from now.

c. Compute the probability that the spot price is less than $100 in 2 years from now.

d. Compute the probability that the spot price is greater than $120 in 2 years from now.

Problem 5. Suppose that the stock price follows a geometric Brownianmotion (GBM)

with drift 𝜇 and instantaneous volatility 𝜎, i.e.,

d𝑆 = 𝜇𝑆 d𝑡 + 𝜎𝑆 d𝐵.

Show that 𝑌 = 𝑆𝛼 also follow a GBM and determine the drift and volatility as a function of

𝜇, 𝜎, and 𝛼.

Problem 6. Let 𝑆 be the price of TESLA stock that follows a geometric Brownianmotion

such that

d𝑆 = 𝜇𝑆 d𝑡 + 𝜎𝑆 d𝐵.

Your sales teamwould like to launch a new product called TESLA Quadro that tracks the

price of TESLA to the power 4. In other words, the value of this instrument is given by

𝑌 = 𝑆4.What is the process followed by 𝑌?
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Problem 7. GoingUp Corp. has been gaining a lot of attention in the media for its upside

potential. Financial experts agree that the stock price follows a geometric Brownian

motion with drift (𝜇) equal to 20% per year and volatility of price returns (𝜎) of 73% per

year. The current stock price is $220. Compute the probability that the stock price is

greater than $233 in 10months from now.

Problem 8. You would like to invest in ZigZag Inc. but you are concerned that the stock

price might go down. You have been studying the dynamics of the stock price and con-

cluded that the stock follows a geometric Brownianmotion with drift (𝜇) equal to 13% per

year and volatility of price returns (𝜎) of 58% per year. The current stock price is $118.

Compute the probability that the stock price is less than $98 in 12months from now.

Problem 9. You are analyzing BMX stock. You believe that it is accurate to model the

price evolution of the stock as a geometric Brownianmotion. Using historical data, you

estimate that the drift (𝜇) is 12.0% per year and the volatility of stock returns (𝜎) is 39%per

year. The stock price just closed at $331. Compute the expected stock price in 9 months

from now.

Problem 10. Suppose that the stock price follows a geometric Brownianmotion (GBM)

with drift 𝜇 and instantaneous volatility 𝜎. Show that 𝑌 = 𝑆𝑒−𝜇𝑡 also follow a GBM and

determine the drift and volatility as a function of 𝜇 and 𝜎.

Problem 11. Suppose that the stock price follows a geometric Brownianmotion (GBM)

with drift 𝑟 and instantaneous volatility 𝜎, where 𝑟 is the risk-free rate. Consider the

futures price of 𝑆 at time 𝑡 and expiring at 𝑇, given by 𝑓 = 𝑆𝑒𝑟(𝑇−𝑡). Show that 𝑓 has zero

drift and hence is a martingale.

Problem 12. Suppose that the stock price follows a geometric Brownianmotion (GBM)

with drift 𝜇 = 10% and instantaneous volatility 𝜎 = 25%. Compute E(𝑆𝑇1{𝑆𝑇>𝐾}) and

E(1{𝑆𝑇>𝐾}) = P(𝑆𝑇 > 𝐾) if 𝑆0 = 100,𝐾 = 95 and 𝑇 = 2.
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