Prof. Lorenzo Naranjo Fall 2025

Modeling Stock Prices in Continuous-Time

Stochastic Processes

A stochastic process describes the evolution of arandomvariable overtime. Infinance, we
use stochastic processes to model the evolution of stock prices, interest rates, volatility,
foreign exchange rates, and commodity prices. We distinguish between:

 Discrete-time processes: The values of the process {S, } are allowed to change only
at discrete time intervals, i.e.,n € {0,1,2,...,N}orn € N.

e Continuous-time processes: The stochastic process {S;} is defined forallt € [0, T].

We will now consider several stochastic processes commonly used to model the future
evolution of the price of an asset such as a stock. We start by understanding discrete-
time processes and then extend the analysis to include continuous-time processes. The
analysis is informal, as the theory of stochastic process in continuous time requires
advanced mathematical concepts, which is beyond the scope of these notes.

It is essential to realize that a stochastic process for a stock price is trying to model all
possible histories between now and a specific time in the future. A sample path is one of

the many possible histories generated using the stochastic process.

Random Walks

We will now study one of the simplest yet most intriguing stochastic processes defined in
discrete time. A one-dimensional random walk {X,,} is a stochastic process defined as

XO = xo,

Xn+1 = Xn + ey,



where {e, } are independent and identically distributed (i.i.d.) random variables such that
E(e,) = Oforalln = 1. Note that e,, need not be normally distributed. For example, for
each n, the variable e,, could take the values 1 and -1 with equal probability. A random
walk only requires that the shocks e,, are independent.

Random Walk
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Figure 1: The figure plots simulated paths for the random walk defined as Xg = 0, X441 = X, +

ent+1, Where {e, } is an i.i.d sequence taking the values 1 and —1 with equal probability,
and 1 <n < 5000.

An essential property of arandom walk is that its sample paths diverge as n grows. Indeed,
we have
Xn=Xn-1tey

=AXp-2teyqtey

:X0+el+"'+en_1+en

n
= XO + z ei.
i=1



Denoting V(e,,) = ¢2, and since we have that {e,,} are independent, we have
V(X,) = no?.

Therefore, the variance of X,, increases linearly withnasn — oo.

Intuitively, this is saying that if we simulate many different sample pathsforn =0, ..., N
where N is very large, we should expect to see some values of X to be very high and
positive whereas others will be significantly negative.

Brownian Motion

A very useful random walk can be defined as follows:
Beiar = Br + Viteiar,

where B, = 0 and {e;} are i.i.d. such thate; ~ N(0,1). Note that here time increases
each step by At. Letting At — 0, the resulting process {B;} fort € [0,T] is called a
Brownian motion or Wiener process.

The Brownian motion has the following properties:

e The sample paths are continuous.

e Fors < t, theincrement B — B; ~ N(0,t — s), i.e. is normally distributed with
mean 0 and variance t — s.

* |ncrements are independent of each other.

* In particular, note that B, ~ N(0,t) forO0 <t <T.



Brownian Motion

Figure 2: The figure plots simulated paths for {B;} where 0 < t < 10.

Geometric Brownian Motion

Now we turn our attention to modeling stock prices {S;}. We need to be careful, though,
as stock prices cannot be negative. We also would like to allow the model to display a
certain drift u and volatility .

To achieve this, we model the percentage change of a stock price between t and t + At
as
AS;

St

Note that the percentage change in price over an interval At is normally distributed with
mean pAt and variance g 2At. Letting At — 0, the resulting process {S;} fort € [0,T] is
called a geometric Brownian motion (GBM).



Geometric Brownian Motion
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Figure 3: The figure plots simulated paths for a geometric Brownian motion {S;} where 0 < t < 10,
So = 100, u = 0.20, and ¢ = 0.20. The dashed line denotes E (S;) = Syekt.

Stochastic Calculus

Once we have defined how S; behaves over time, we now turn our attention to model how
a function of S; behaves over time. The reason why we are interested in this is because
we want to find a way to price derivatives as a function of the relevant state variables. We
will see later that when the stock price is driven by a single source of uncertainty, then the
value of a call or put option depends only on the stock price itself and time-to-maturity,
i.e. the price of the derivative when the stock price is S and the time-to-maturity is T will
be of the form F (S, T).

We will start studying how X; = F(S;) behaves over time and we will add later the time
dimension to the problem. In what follows we assume that F(-) is a smooth function

such that its first and second derivatives exist.



Ito’s Lemma

Remember that the Brownian motion increment is defined

ABy = Beine — B = \/Eet+At'

Consider a GBM process {S;} and a smooth function F(+). A second order Taylor approxi-

mation around S; implies

1
F(S¢ +ASp) = F(Sp) + F'(S)(ASy) + EF”(St)(ASt)Z-

Using the results derived in the appendix, we have that

(AS)? = (uS At + 0S,AB;)?

= (uSe)? (At)? +2p0(S)? (At)(ABy) +(0Sy)? (ABy)?
~0 ~0 ~At
~ o2SEAt.

We can finally conclude that

1
AF(S,) ~ <uStF’(St) +50°SEF” (st)> At + 0S.F'(S,)AB,.

The continuous-time analog of the previous analysis is as follows.

Ito’s Lemma for GBM

Consider a GBM process {S;} given by
dS =uSdt+oSdB, (M

and a twice-differentiable function F(S). Then we have

1
dF = (uSF’(S) + EO'ZSZF”(S)> dt + oSF'(S) dB.



Itis usually more convenient to use the box calculus when working with stochastic pro-
cesses defined through Brownian motions.

Box Calculus

Considerthe GBM process {S;} definedin (1). The box calculus rules for Ito processes
are:

(dt)> =0,
(dt)(dB) = (dB)(dt) =0,
(dB)? = dt.

Furthermore, denote Fs = F'(S) and Fgg = F"(S). Ito’s Lemma can then be restated
as

1
dF = FS ds + EFSS(dS)ZJ

where
(dS)? = (uSdt + 0SdB)? = 6252 dt.

Solving for GBM

Define X = In(S), which implies S = eX. We have that F; = 1/S and Fss = —1/52, which
implies

1
dX = FsdS + EFSS(dS)2
1 1 1
— 2¢2
—E(HSdt+GSdB)+E<—S—2>O'S dt
1
=(,udt+adB)—Eazdt
1,
= ,u—Ea dt + o dB.

We can then solve for Xr:

T T 1 T
XT—X(,:f dX=J (ﬂ—502>dt+f o dB
0 0 0



and conclude that

~

1
Sy =Sy exp ((u — 502> T + O'BT> . (2

Properties of Stock Prices Following a GBM

Equation (2) can be rewritten as:

1
ln(ST) = ln(So) + (/l - EO’Z> T + O'BT.

We can conclude that In(Sy) ~ N(m, s?), where

1
m = n(Sy) + (u — —02> T,

2
s =oVT.

In other words, Sy is lognormally distributed with mean m and variance s?2.

Example 1. Consider a stock whose price at time t is given by S; and that follows a GBM.
The expected return is 12% per year and the volatility is 25% per year. The current spot
price is $25. If we denote X = In(Sr) and take T = 0.5, we have that:

E(Xr) = In(25) + (0.12 — 0.5(0.25)?) (0.5) = 3.2633,
SD(X;) = 0.25V0.5 = 0.1768.

Hence, the 95% confidence interval for St is given by:
[e3.2633—1.96(0.1768) e3.2633+1.96(0.1768)] = [18.48,36.96].

Therefore, there is a 95% probability that the stock price in 6 months will lie between
$18.48 and $36.96. O



Moments of the Stock Price
The fact that the stock price attime T is log-normally distributed allows us to compute
the mean and standard deviation of St.

Moments of the Stock Price

The expectation and standard deviation of S are given by:

E(Sr) = SOB”T»

SD(S;) = E(Sp)Veo T — 1.

Proof

Since In(Sy) ~ NV (m, s?), we can compute its moments using the results derived earlier

so that
1 1 1
E(ST) — em+552 — eln(50)+(u—502)T+502T — eln(SO)e”T — Soe‘uT.
In this model, the expected stock price at any point in the future is just the current stock
price growing at the rate u for T years. [
Therefore, the expected stock price grows at a rate u. The variance of Sy, however, is large

and increases exponentially with time.

Example 2. Consider a stock whose price at time t is given by S; and that follows a GBM.
The expected return is 12% per year and the volatility is 25% per year. The current spot
price is $25. The expected price and standard deviation 6 months from now are:

E(Sy) = 25e0%12(05) = ¢26.55,

SD(Sy) = 26.55ve025%(05) — 1 = $4.73,


lognormal-distribution.qmd#sec-log-moments

A Generalized Form of I1to’s Lemma

Most derivatives not only depend on the underlying asset but also depend on time since
they have fixed expiration dates. The analysis we did before for Ito’s Lemma generalizes

easily to handle this case. Consider a non-dividend paying stock that follows a GBM:
dS = uSdt + oSdB,
and a smooth function F (S, t). Ito’s Lemma in this case applies in the following form:
dF=&d&+§@@$2+ﬂm,

where (dS)? = 6252 dt.

Appendix
Some Intuition on Brownian Motion

Remember that we defined the Brownian motion or Wiener process as a random walk
driven by normally distributed shocks:

Biiar = By + VAterya,

where {e;} is ani.i.d. sequence of random variables distributed NV'(0, 1).

Let’s start by splitting the interval [0, T] into n intervals of length At = t;, 1 — t;.

Bto Btl Btz . Btn—2 Btn—l

T T T T T

to =0 t t t 1 t, =T t

Note thatt; = iAtand T = t,, = nAt. The Brownian motion increments are then defined
as ABti = Bti+1 - Bt"

L

10



The first question one might have is why using normally distributed increments. There
are two answers for that. First, a sum of normally distributed random variables is also
normal and in this case we have:

n-1 n—-1
By — By = Z AB,, = Z VAtep, ap.
i=0 i=0

The variance of Z?z_ol VAte,, 5 is given by Z?z_ol At = nAt = T, which implies that By ~
N(0,T). So by using normally distributed increments we guarantee that the resulting

process for Brownian motion is also normal.

Second, imagine that we use a different distribution for the i.i.d. increments while still
requiring E(e;) = 0 and V(e;) = 1. For example, e; could take the values 1 and —1 with
equal probability. Nevertheless, the central limit theorem guarantees that:

n-—1
1 d
Vn - Z VAtesipr | = N(0,Ab).
i=0

In other words, even if we use a different distribution for the increments, asn — o we
have that By ~ N (0, T). Therefore, there is no loss in generality in assuming normally
distributed increments for the Brownian motion.

A second question that one might have, and one of the most puzzling facts in stochastic
calculus in my opinion, is the fact that when we apply Ito’s lemma we use the fact that
(dB;)? = dt.Clearly, (AB,)? = Ate? # At where e, ~ NV'(0, 1). Indeed, if AB; is random,
then (AB,)? must also be random. However, we will see in a moment that it is fine to say
that (AB,)? ~ At as At — 0.

11



Let’s start by computing the mean and variance of (AB,)?:

E[(ABy)?] = At

V[(8B)?] = E[(AB)*] - (E[(4B)?])"
= 3(At)? — (At)?
= 2(At)2.

In computing the variance of (AB;)? we used the fact that if X ~ V' (0,02), then E(X*) =
30*. Since AB, ~ V' (0, At), we have that E [(AB,)*]| = 3(At)?.
Consider now the following sum:

-1
Su= ) (ABy)2.

S

,ﬁ
Il
=]

Clearly, S,, is a sum of nindependent random variables so its variance is the sum of the

variance of each AB; :
E(S,) =nAt=T
oo 2T?
V(Sy) = n(2(At)°) = -

Since lim,, V(S,;) = 0, we have that S,, = T asn — oo in probability. Intuitively, the
previous result is really the weak-law of large numbers since we can re-write it as 57” - At
asn — oo in probability. However, when you apply the weak-law of large numbers to an
arbitrary sequence of i.i.d. random variables, you cannot say that you can approximate
each random variable by its mean just because its average converges to their mean. In
our case, since the variance of (ABt)2 is so small compared to its mean, we can safely say
that (AB;)? behaves as if (AB;)? = Atasn — . In other words, we have that (AB;)? ~ At
for small At.

12



We can apply the same analysis to study the behavior of (At)(AB;) as At — 0. Since:

E[(At)(AB)] =0

V[(At)(AB)] = E [((At)(ABY))?] — (E[(AD)(ABY)])?
= (At)? E[(AB)?] — ((At) E[AB])?
= (At)3.

Consider now the following sum:
n—-1
Ca= ) (B)(AB,).
i=0

The mean and variance of C,, are given by:
E(C,) =0
T3
V(Cy) = nZ
Since lim,,,, V(C,) = 0, we have that C,, - 0 asn — oo in probability, implying that

(At)(AB;) = 0 for small At.

Computing Partial Expectations

Since In(Sy) ~ V' (m, s2), we can use the result introduced earlier about partial expecta-
tions to show the following property.

13
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Partial Expectations of the Stock Price
Consider a non-dividend paying stock that follows a GBM as defined in 1. Then we

have that:

( ) o [ GSo/K) + G+ ~a)T
E(S71 = Spet’ @ ,
T V{sr>K} 0 T

n(So/K) + (u = 50™)T
oVT

E (K1{ST>K}) =K ()

Proof

1.2 o <m + 52 — ln(K))

E(Srsrry) = €2 S

In(So/K) + (u+ 30T
VT '

= SoeﬂT b

S

E (K1{ST>K}) =Ko <L”(K)>

In(So/K) + (u = 50*)T
oVT

O

It turns out that these results are everything we need in order to derive the Black-Scholes

pricing formulas!

Martingales

A martingale is a process closely related to the random walk but slightly more general. A

discrete-time martingale {Zn}n20 is a stochastic process such that:

E (Z‘)’l+1 | ZOJZJJ ...,Zn) = Zn.

14



Intuitively, the history of the process {Z,,} is irrelevant to forecast Z,,;. The current
value of Z,, is the only thing that matters. Arandom walk is a martingale, but note that a

martingale need not be a random walk.

For example, consider the process {Z,,}:

Znt+1 = Zn€nt1s

where {¢g,,} is an i.i.d. sequence such thatE (g,) = 1foralln > 0. Itis a martingale

since:
E(Zn+1 1 21,25, .., Zy) = E(Zpens1 | Z3),

=ZnE(ens1 | Zn),
=7y

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin5241-fall25b.

Problem 1. Consider a stock whose price at time t is given by S; and that follows a
geometric Brownian motion (GBM). The expected return is 18% per year and the volatility
is 32% per year. The current spot price is $60.

a. Compute the expected price 9 months from now.
b. Compute the mean and standard deviation of the log-spot price 9 months from now.
c. Compute the 95% confidence interval of In(Sr) 9-months from now, and report the

corresponding values for Sr.

Problem 2. Consider a stock whose price at time t is given by S; and that follows a GBM.
The expected returnis 11% per year and the volatility is 27% per year. The current spot

price is $60.

a. Compute the expected price of S; 1 year from now.
b. Compute the expected price of 1/5; 1 year from now.

15
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Problem 3. Consider a stock whose price at time t is given by S; and that follows a GBM.
The expected return is 12% per year and the volatility is 35% per year. The current spot
price is $55. Let T = 18 months.

a. Compute E(Sr).
b. Compute the mean and standard deviation of the log-spot price at T.
c. Find C suchthatP(S; < C) = 0.01.

Problem 4. Consider a stock whose price attime T is given by S and that follows a GBM,

i.e.,
In(Sy) ~ N (In(Sy) + (u — 0.562)T, 52T).

The expected return is 12% per year and the volatility is 35% per year. The current spot
price is $100.

Compute the expected price in 2 years from now.
Compute the mean and standard deviation of the log-spot price in 2 years from now.
Compute the probability that the spot price is less than $100 in 2 years from now.

o o0 T o

Compute the probability that the spot price is greater than $120 in 2 years from now.

Problem 5. Suppose that the stock price follows a geometric Brownian motion (GBM)

with drift g and instantaneous volatility g, i.e.,
dS = uSdt +oSdB.

Show that Y = S¢ also follow a GBM and determine the drift and volatility as a function of

u, o, and a.

Problem 6. Let S be the price of TESLA stock that follows a geometric Brownian motion
such that
dS = uSdt +oSdB.

Your sales team would like to launch a new product called TESLA Quadro that tracks the
price of TESLA to the power 4. In other words, the value of this instrument is given by
Y = S*. What is the process followed by Y?

16



Problem 7. GoingUp Corp. has been gaining a lot of attention in the media for its upside
potential. Financial experts agree that the stock price follows a geometric Brownian
motion with drift (1) equal to 20% per year and volatility of price returns (a) of 73% per
year. The current stock price is $220. Compute the probability that the stock price is
greater than $233 in 10 months from now.

Problem 8. You would like to invest in ZigZag Inc. but you are concerned that the stock
price might go down. You have been studying the dynamics of the stock price and con-
cluded that the stock follows a geometric Brownian motion with drift (1) equal to 13% per
year and volatility of price returns (o) of 58% per year. The current stock price is $118.
Compute the probability that the stock price is less than $98 in 12 months from now.

Problem 9. You are analyzing BMX stock. You believe that it is accurate to model the
price evolution of the stock as a geometric Brownian motion. Using historical data, you
estimate that the drift (i) is 12.0% per year and the volatility of stock returns (g) is 39% per
year. The stock price just closed at $331. Compute the expected stock price in 9 months

from now.

Problem 10. Suppose that the stock price follows a geometric Brownian motion (GBM)
with drift 4 and instantaneous volatility o. Show that Y = Se ™! also follow a GBM and
determine the drift and volatility as a function of 4 and o.

Problem 11. Suppose that the stock price follows a geometric Brownian motion (GBM)
with drift r and instantaneous volatility o, where r is the risk-free rate. Consider the
futures price of S at time t and expiring at T, given by f = Se™ =D Show that f has zero
drift and hence is a martingale.

Problem 12. Suppose that the stock price follows a geometric Brownian motion (GBM)

with drift u = 10% and instantaneous volatility ¢ = 25%. Compute E(S71s,>k}) and
E(Msp>ky) = P(Sr > K) if S = 100, K =95and T = 2.
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