Problem Set 1

Instructions: This problem set is due on 9/5 at 11:59 pm CST and is an individual assignment. All problems must be handwritten. Scan your work and submit a PDF file.

Problem 1. Suppose your production opportunity set in a world with perfect certainty consists of the following investment projects:

Project	Maximum Investment	IRR
Α	\$1,000,000	8%
В	\$1,000,000	25%
С	\$2,000,000	4%
D	\$3,000,000	40%

Consider an investor with utility function $U(C_0,C_1)=C_0+0.9C_1$. This investor has \$7,000,000 in wealth

- a. If the investor has no access to capital markets.
 - i. What is the value of her portfolio of projects?
 - ii. How much should she consume today and how much next period?
- b. Suppose now that a new bank comes to town, that allows the investor to borrow or lend at the interest rate of 10% per period.
 - i. What is the value of her portfolio of projects?
 - ii. How much should she consume today and how much next period?
- c. If the bank was forced to close, how much the government would have to pay the investor to leave her indifferent?

Problem 2. Consider an investor with utility $U(C_0, C_1) = \ln(C_0) + 2\ln(C_1)$ for consumption today and next period. The investor has initial wealth W=1 and can invest $K=1-C_0$ in a technology that produces $f(K)=\sqrt{K}$ next period.

a. Compute the optimal consumption at dates 0 and 1.

Assume now that the investor has access to capital markets and can borrow or lend at r.

- b. Compute the present value and the net present value of the technology.
- c. If the investor sells the company at the value computed in b., what is her optimal consumption now?

Problem 3. You are offered the possibility to participate at the following lottery:

Gain	Probability
2	0.5
0	0.5

The cost at participating at the lottery is 1 unit of consumption. If you chose not to participate, you keep your unit of consumption.

- a. Is this a fair gamble?
- b. Show that the decision not to participate at the gamble implies that your utility function is concave.

Problem 4. Consider gamble *A*:

Gain	Probability
-2	0.09
4	0.30
10	0.40
16	0.21

From A, we can construct another gamble B by adding white noise to a number of outcomes. Indeed, we can replace the outcome 4 by the gamble A':

- 3 with probability 1/2
- 5 with probability 1/2

with E(A') = 4. In the same manner, we can replace outcome 16 with gamble A'':

- 12 with probability 1/3
- 18 with probability 2/3

with
$$E(A'') = 16$$
.

Show formally why any risk averse individual prefers gamble A to gamble B.

Problem 5. A distant relative in Europe has recently passed away, leaving behind an estimated fortune of \$1 million. This has left two grieving but competing close relatives: Peter, who currently has no wealth, and Paul, who has \$10,000. With the will missing, they can pursue legal action, but the winner will incur legal costs amounting to 10% of the inheritance. Both Peter and Paul share the same utility function:

$$U(W) = W^{1/4}$$

Peter and Paul both agree that Peter has a 60% chance of winning the million, while Paul has a 40% chance. The judge cannot issue a split decision; the entire amount must go to one of them.

- a. Should Peter and Paul take their dispute to court, or is there a mutually beneficial agreement they could reach instead?
- b. Does the conclusion change if the heirs disagree on the probabilities? For instance, what if Peter believes he has an 80% chance of winning, while Paul thinks he has an 80% chance of winning?