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The Lognormal Distribution

The Normal Distribution

We say that a real-valued random variable (RV) 𝑋 is normally distributed with mean 𝜇 and

standard deviation 𝜎 if its probability density function (PDF) is:

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2

and we usually write 𝑋 ∼ 𝒩(𝜇, 𝜎2). The parameters 𝜇 and 𝜎 are related to the first and

secondmoments of 𝑋.
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f(x)

Figure 1: The figure shows the density function of a normally distributed random variable with

mean 𝜇 and standard deviation 𝜎.
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Moments of the Normal Distribution

Theparameter𝜇 is themeanor expectationof𝑋while𝜎denote its standarddeviation.

The variance of 𝑋 is given by 𝜎2.

Proof

Let 𝑋 = 𝜇 + 𝜎𝑍where 𝑍 ∼ 𝒩(0, 1). Start by defining 𝑓(𝑧) = 𝑒
−
1

2
𝑧2
,which implies that

𝑓′(𝑧) = −𝑧𝑒
−
1

2
𝑧2

and 𝑓′′(𝑥) = 𝑧2𝑒
−
1

2
𝑧2
− 𝑒

−
1

2
𝑧2
.We can then write:

𝑧𝑒
−
1

2
𝑧2
= −𝑓′(𝑧)

𝑧2𝑒
−
1

2
𝑧2
= 𝑓′′(𝑥) + 𝑓(𝑧)

Then,

E(𝑍) = �
∞

−∞

1

√2𝜋
𝑧𝑒

−
1

2
𝑧2
𝑑𝑧

=
1

√2𝜋
�
∞

−∞

−𝑓′(𝑧) 𝑑𝑧

=
1

√2𝜋
�−𝑓(𝑧)�

∞

−∞

�

= 0,

E(𝑍2) = �
∞

−∞

1

√2𝜋
𝑧2𝑒

−
1

2
𝑧2
𝑑𝑧

=
1

√2𝜋
�
∞

−∞

𝑓′′(𝑥) + 𝑓(𝑧) 𝑑𝑧

=
1

√2𝜋
�𝑓′(𝑧)�

∞

−∞

+�
∞

−∞

𝑓(𝑧) 𝑑𝑧�

=
1

√2𝜋
(0 + √2𝜋)

= 1,

Var(𝑍) = E(𝑍2) − E(𝑍)2

= 1.
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Note that we used the fact that

�
∞

−∞

𝑓(𝑧) 𝑑𝑧 = √2𝜋.

We can now compute E(𝑋) = 𝜇 + 𝜎 E(𝑍) = 𝜇 and Var(𝑋) = 𝜎2 Var(𝑍) = 𝜎2.

As with any real-valued random variable 𝑋, in order to compute the probability that 𝑋 ≤ 𝑥

we need to integrate the density function from−∞ to 𝑥∶

P(𝑋 ≤ 𝑥) = �
𝑥

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑢−𝜇)2

2𝜎2 𝑑𝑢.

The function 𝐹(𝑥) = P(𝑋 ≤ 𝑥) is called the cumulative distribution function of 𝑋. The

Leibniz integral rule implies that 𝐹′(𝑥) = 𝑓(𝑥).

The Standard Normal Distribution

An important case of normally distributed random variables is when 𝜇 = 0 and 𝜎 = 1. In

this case we say that 𝑍 ∼ 𝒩(0, 1) has the standard normal distribution and its cumulative

distribution function is usually denoted by the capital Greek letterΦ (phi), and is defined

by the integral:

Φ(𝑧) = P(𝑍 ≤ 𝑧) = �
𝑧

−∞

1

√2𝜋
𝑒
−
𝑥2

2 𝑑𝑥.

Since the integral cannot be solved in closed-form, the probability must then be obtained

from a table or using a computer. For example, in R we can computeΦ(−0.4) by typing

the following:

pnorm(-0.4)

[1] 0.3445783

If you prefer to use Excel, you need to type in a cell =norm.s.dist(-0.4,TRUE), which
yields the same answer.
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Figure 2: The blue shaded area representsΦ(𝑧).

Left-Tail Probability

Knowing how to compute or approximateΦ(𝑧) allows us to compute P(𝑋 ≤ 𝑥) when

𝑋 ∼ 𝒩(𝜇, 𝜎2) since 𝑍 =
𝑋−𝜇

𝜎
∼ 𝒩(0, 1)∶

P(𝑋 ≤ 𝑥) = P�
𝑋 − 𝜇

𝜎
≤
𝑥 − 𝜇

𝜎
�

= P �𝑍 ≤
𝑥 − 𝜇

𝜎
�

= Φ�
𝑥 − 𝜇

𝜎
�

where 𝑍 =
𝑋 − 𝜇

𝜎
∼ 𝒩(0, 1) is called a Z-score.

Example 1. Suppose that 𝑋 ∼ 𝒩(𝜇, 𝜎2)with 𝜇 = 10 and 𝜎 = 25.What is the probability

that 𝑋 ≤ 0?

P(𝑋 ≤ 0) = P �𝑍 ≤
0−10

25
�

= Φ(−0.40)

= 0.3446.
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Right-Tail Probability

For a random variable 𝑋, the right-tail probability is defined as P(𝑋 > 𝑥). Since P(𝑋 ≤

𝑥) + P(𝑋 > 𝑥) = 1,we have that:

P(𝑋 > 𝑥) = 1 − P(𝑋 ≤ 𝑥).

x x

= −

Figure 3: The right-tail probability is the probability of the whole distribution, which is one, minus

the left-tail probability.

Example 2. Suppose that𝑋 ∼ 𝒩(𝜇, 𝜎2)with 𝜇 = 10 and 𝜎 = 25. What is the probability

that 𝑋 > 12?

P(𝑋 ≤ 12) = P �𝑍 ≤
12−10

25
�

= Φ(0.08)

= 0.5319.

Therefore, P(𝑋 > 12) = 1 − 0.5319 = 0.4681.

Interval Probability

The probability that a random variable𝑋 falls within an interval (𝑋1, 𝑋2] is given by P(𝑥1 <

𝑋 ≤ 𝑥2) = P(𝑋 ≤ 𝑥2) − P(𝑋 ≤ 𝑥1).
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x1 x2 x2 x1

= −

Figure 4: If you subtract the area to the left of 𝑥1 to the area that is to the left of 𝑥2 you obtain the

probability of 𝑥1 < 𝑋 ≤ 𝑥2.

Example 3. Suppose that𝑋 ∼ 𝒩(𝜇, 𝜎2)with 𝜇 = 10 and 𝜎 = 25. What is the probability

that 2 < 𝑋 ≤ 14?

P(𝑋 ≤ 14) = P �𝑍 ≤
14−10

25
�

= Φ(0.16)

= 0.5636,

P(𝑋 ≤ 2) = P �𝑍 ≤
2−10

25
�

= Φ(−0.32)

= 0.3745.

Therefore, P(2 < 𝑋 ≤ 14) = 0.5636 − 0.3745 = 0.1891.

The Lognormal Distribution

If 𝑋 ∼ 𝒩(𝜇, 𝜎2), then 𝑌 = 𝑒𝑋 is said to be lognormally distributed with the same parame-

ters. The pdf of a lognormally distributed random variable 𝑌 can be obtained from the pdf

of 𝑋.

Lognormal Density

If 𝑌 is lognormally distributed with parameters 𝜇 and 𝜎2, the PDF of 𝑌 is given by:

𝑓(𝑦) =
1

𝑦√2𝜋𝜎2
𝑒
−
(ln(𝑦)−𝜇)2

2𝜎2 .
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Figure 5: The figure shows the difference between a normal and a lognormal PDF with the same

parameters.

Proof

Let 𝑌 = 𝑒𝑋 where 𝑋 = 𝜇 + 𝜎𝑍 and 𝑍 ∼ 𝒩(0, 1). Then,

P(𝑌 ≤ 𝑦) = P(𝑋 ≤ ln(𝑦))

= �
ln(𝑦)

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥.

Let’s define 𝑧 = 𝑒𝑥. This implies that 𝑥 = ln(𝑧), which in turn implies that 𝑑𝑥 = (1/𝑧)𝑑𝑧.

Therefore,

P(𝑌 ≤ 𝑦) = �
𝑦

−∞

1

𝑧√2𝜋𝜎2
𝑒
−
(ln(𝑧)−𝜇)2

2𝜎2 𝑑𝑧.

Thus, the integrand of the previous expression is the probability density function of 𝑌.

Unlike the normal density, the lognormal density function is not symmetric around its

mean. Normally distributed variables can take values in (−∞,∞), whereas lognormally

distributed variables are always positive.
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Computing Probabilities

We can use the fact that the logarithm of a lognormal random variable is normally dis-

tributed to compute cumulative probabilities.

Example 4. Let 𝑌 = 𝑒4+1.5𝑍 where 𝑍 ∼ 𝒩(0, 1). What is the probability that 𝑌 ≤ 100?

P(𝑌 ≤ 100) = P(𝑒𝑋 ≤ 100)

= P(𝑋 ≤ ln(100))

= P �𝑍 ≤
ln(100)−4

1.5
�

= Φ(0.4034)

= 0.6567

Therefore, there is a 65.67% chance that 𝑌 is less than or equal 100.

Moments

Moments of a Lognormal Distribution

Let 𝑌 = 𝑒𝜇+𝜎𝑍 where 𝑍 ∼ 𝒩(0, 1). We have that:

E(𝑌) = 𝑒𝜇+0.5𝜎
2

Var(𝑌) = 𝑒2𝜇+𝜎
2
(𝑒𝜎

2
− 1)

SD(𝑌) = E(𝑌)�𝑒𝜎
2
− 1

Proof
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E(𝑌) = �
∞

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑒𝑥 𝑑𝑥

= �
∞

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2
+𝑥
𝑑𝑥

= �
∞

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑥−(𝜇+𝜎2))2

2𝜎2
+(𝜇+0.5𝜎2)

𝑑𝑥

= 𝑒𝜇+0.5𝜎
2
�
∞

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑥−(𝜇+𝜎2))2

2𝜎2 𝑑𝑥
�������������������

=1

= 𝑒𝜇+0.5𝜎
2

Using the fact that 𝛼𝑋 ∼ 𝒩(𝛼𝜇, (𝛼𝜎)2), it is also possible to compute the expectation of

powers of lognormally distributed variables:

E(𝑌𝛼) = E(𝑒𝛼𝑋) = 𝑒𝛼𝜇+0.5(𝛼𝜎)
2
.

This is useful to compute the variance and standard deviation of 𝑌:

Var(𝑌) = E(𝑌2) − (E(𝑌))
2

= 𝑒2𝜇+2𝜎
2
− 𝑒2𝜇+𝜎

2

= 𝑒2𝜇+𝜎
2
(𝑒𝜎

2
− 1)

SD(𝑌) = �Var(𝑌)

= E(𝑌)�𝑒𝜎
2
− 1

Example 5. Let 𝑌 = 𝑒4+1.5𝑍 where 𝑍 ∼ 𝒩(0, 1). The expectation and standard deviation

of 𝑌 are:

E(𝑌) = 𝑒4+0.5(1.5
2) = 168.17

SD(𝑌) = 168.17�𝑒1.5
2
− 1 = 489.95
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Appendix

Percentiles

For a standard normal variable 𝑍, a right-tail percentile is the value 𝑧𝛼 above which we

obtain a certain probability 𝛼.Mathematically, this means finding 𝑧𝛼 such that:

P(𝑍 > 𝑧𝛼) = 𝛼 ⇔ P(𝑍 ≤ 𝑧𝛼) = 1 − 𝛼.

0 zα

α

z

Figure 6: The right-tail percentile is the value 𝑧𝛼 that gives an area to the right equal to 𝛼.

This implies thatΦ(𝑧𝛼) = 1 − 𝛼, or 𝑧𝛼 = Φ−1(1 − 𝛼), whereΦ−1(⋅) denotes the inverse

function ofΦ(⋅). Again, there is no closed-form expression for this function and we need

a computer to obtain the values. For example, say that𝛼 = 0.025. In Rwe could compute

𝑧𝛼 = Φ−1(0.975) by using the function qnorm as follows:

qnorm(0.975)

[1] 1.959964

In Excel the function =norm.s.inv(0.975) provides the same result.
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The following table shows common values for 𝑧𝛼:

𝛼 𝑧𝛼

0.050 1.64

0.025 1.96

0.010 2.33

0.005 2.58

A (1 − 𝛼) two-sided confidence interval (CI) defines left and right percentiles such that the

probability on each side is 𝛼/2. For a standard normal variable 𝑍, the symmetry of its pdf

implies:

P(𝑍 ≤ −𝑧𝛼/2) = P(𝑍 > 𝑧𝛼/2) = 𝛼/2

−zα/2 0 zα/2

α/2α/2

z

Figure 7: The areas on each side are both equal to 𝛼/2.

Example 6. Since 𝑧2.5% = 1.96, the 95% confidence interval of 𝑍 is [−1.96, 1.96]. This

means that if we randomly sample this variable 100,000 times, approximately 95,000

observations will fall inside this interval.
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If 𝑋 ∼ 𝒩(𝜇, 𝜎2), its confidence interval is determined by 𝜉 and 𝜁 such that:

P(𝑋 ≤ 𝜉) = 𝛼/2

⇒ P(𝑍 ≤
𝜉−𝜇

𝜎
) = 𝛼/2,

P(𝑋 > 𝜁) = 𝛼/2

⇒ P(𝑍 >
𝜁−𝜇

𝜎
) = 𝛼/2,

which implies that−𝑧𝛼/2 =
𝜉−𝜇

𝜎
and 𝑧𝛼/2 =

𝜁−𝜇

𝜎
.The (1 − 𝛼) confidence interval for 𝑋 is

then [𝜇 − 𝑧𝛼/2𝜎, 𝜇 + 𝑧𝛼/2𝜎].

Example 7. Suppose that 𝑋 ∼ 𝒩(𝜇, 𝜎2)with 𝜇 = 10 and 𝜎 = 25. Since 𝑧2.5% = 1.96,

the 95% confidence interval of 𝑋 is:

[10 − 1.96(25), 10 + 1.96(25)] = [−39, 59].

We could also apply the same priciple for a lognormal random variable. Let 𝑌 = 𝑒𝜇+𝜎𝑍

where 𝑍 ∼ 𝒩(0, 1). We then have that

− 𝑧𝛼/2 < 𝑍 ≤ 𝑧𝛼/2

⇒ 𝜇 − 𝜎𝑧𝛼/2 < 𝜇 + 𝜎𝑍 ≤ 𝜇 + 𝜎𝑧𝛼/2

⇒ 𝑒𝜇−𝜎𝑧𝛼/2 < 𝑒𝜇+𝜎𝑍 ≤ 𝑒𝜇+𝜎𝑧𝛼/2

The (1 − 𝛼) confidence interval for 𝑌 (centered araound the mean of ln(𝑌)) is

[𝑒𝜇−𝜎𝑧𝛼/2 , 𝑒𝜇+𝜎𝑧𝛼/2].

Example 8. Let 𝑌 = 𝑒4+1.5𝑍 where 𝑍 ∼ 𝒩(0, 1). The 95% confidence interval for 𝑌 is:

[𝑒4−1.96(1.5), 𝑒4+1.96(1.5)] = [2.89, 1032.71].
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Partial Expectations

When pricing a call option, the payoff is positive if the option is in-the-money and zero

otherwise. We usually use an indicator function to quantify this behavior:

𝟙{𝑌>𝐾} = �
0 if 𝑌 ≤ 𝐾

1 if 𝑌 > 𝐾

Partial Expectations

Let 𝑌 = 𝑒𝑋 where 𝑋 ∼ 𝒩(𝜇, 𝜎2). Then we have that:

E �𝑌𝟙{𝑌>𝐾}� = 𝑒
𝜇+

1

2
𝜎2
Φ�

𝜇 + 𝜎2 − ln(𝐾)

𝜎
�

E �𝐾𝟙{𝑌>𝐾}� = 𝐾Φ�
𝜇 − ln(𝐾)

𝜎
�

Proof

The first expectation can be computed as:

E �𝑌𝟙{𝑌>𝐾}� = �
∞

ln(𝐾)

1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑒𝑥 𝑑𝑥

= �
− ln(𝐾)

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑦+𝜇)2

2𝜎2 𝑒−𝑦 𝑑𝑦

= �
− ln(𝐾)

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑦+𝜇)2

2𝜎2
−𝑦

𝑑𝑦

= �
− ln(𝐾)

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑦+(𝜇+𝜎2))2

2𝜎2
+(𝜇+0.5𝜎2)

𝑑𝑦

= 𝑒𝜇+0.5𝜎
2
�
− ln(𝐾)

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑦+(𝜇+𝜎2))2

2𝜎2 𝑑𝑦

= 𝑒𝜇+0.5𝜎
2
Φ�

𝜇+𝜎2−ln(𝐾)

𝜎
�
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The second expectation yields:

E �𝐾𝟙{𝑌>𝐾}� = 𝐾�
∞

ln(𝐾)

1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥

= 𝐾�
− ln(𝐾)

−∞

1

√2𝜋𝜎2
𝑒
−
(𝑦+𝜇)2

2𝜎2 𝑑𝑦

= 𝐾Φ�
𝜇−ln(𝐾)

𝜎
�

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin451.

Problem 1. Suppose that 𝑋 is a normally distributed random variable with mean 𝜇 = 12

and standard deviation 𝜎 = 20.

a. What is the probability that 𝑋 ≤ 0?

b. What is the probability that 𝑋 ≤ −4?

c. What is the probability that 𝑋 > 8?

d. What is the probability that 4 < 𝑋 ≤ 10?

Problem 2. Suppose that 𝑋 is a normally distributed random variable with mean 𝜇 = 10

and standard deviation 𝜎 = 20. Compute the 90%, 95%, and 99% confidence interval for

𝑋.

Problem 3. Suppose that𝑋 = ln(𝑌) is a normally distributed random variable withmean

𝜇 = 3.9 and standard deviation 𝜎 = 15.

a. What is the probability that 𝑌 ≤ 6?

b. What is the probability that 𝑌 > 4?

c. What is the probability that 3 < 𝑌 ≤ 12?

d. What is the probability that 𝑌 ≤ 0?
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Problem 4. Suppose that 𝑋 is a normally distributed variable with mean 𝜇 = 3.70 and

standard deviation 𝜎 = 0.80. If 𝑌 = 𝑒𝑋,what is the probability that 𝑌 is greater than 45?

Optional Practice Problems

These problems are not required to study for the exam, but can give you some good

practice handling mathematical concepts discussed in the notes.

Problem 5. Suppose that𝑋 = ln(𝑌) is a normally distributed random variable withmean

𝜇 = 2.7 and standard deviation 𝜎 = 1. Compute the 90%, 95%, and 99% confidence

interval for 𝑋 and report the corresponding values for 𝑌.

Problem 6. Let 𝑌 = 𝑒𝜇+𝜎𝑍 where 𝜇 = 1, 𝜎 = 2 and 𝑍 ∼ 𝒩(0, 1). Compute:

a. E(𝑌)

b. SD(𝑌) = �E(𝑌2) − E(𝑌)2

c. E(𝑌0.3)

d. E(𝑌−1)
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