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The Black-Scholes Model

The Black-Scholes formula is one of the most celebrated results in finance. In this chapter
we show how to replicate the payoff of a European call or put option written on a non-
dividend paying stock by dynamically trading in the stock and a risk-free bond. The
replication strategy is self-financing, and therefore determines the no-arbitrage price of
the option.

Afundamental side-effect of the replication strategy is that the partial differential equation
(PDE) that characterizes the price of the option does not depend on the real dynamics
of the stock. We could obtain the same pricing equation by using any other risk-premia.
This suggests a powerful idea to price the option. Let us assume that all investors are
risk-neutral. If this was the case, the replication argument that gives the correct price
of the option would still hold. However, in such a world, all assets should be priced by
discounting their payoffs at the risk-free rate.

The risk-neutral approach provides us with a simpler way to derive the Black-Scholes
formula. Since the risk-neutral dynamics of the non-dividend paying stock are driven by
a GBM with drift equal to the risk-free rate, the stock price at maturity is log-normally
distributed and allows us to apply the formulas for partial expectations in order to price
the option.

The Replicating Portfolio Approach

In order to price a call or put option, we take the point of view of a trading desk that makes
the market for option contracts. Their sales team just sold a European option H written
on a non-dividend paying stock S with maturity T to a client. At this point, the traders of
the desk are in charge of hedging the exposure of the short position.

The Traders’ Problem

Since the option depends on the stock, it makes sense to try to hedge the exposure by
trading dynamically in the stock and a risk-free bond. Specifically, we will try to replicate
the option by buying (or selling) Ng ; units of the stock and Ng ; units of a zero-coupon
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bond with face value K and maturity T, respectively, at eachtime t < T." If we call V the
value of such replicating portfolio, we have thatattime t < T:

Vi = N5 St + Np ¢Bt.

In order to replicate the option, we want to make sure that the value of the portfolio at
time t = T equals the payoff of the derivative, that is:

Vr = F(Sr).

For example, if we consider a European call option then F(S7) = max(S;y — K, 0), whereas
for a European put option we have that F(S7) = max(K — Sr, 0).

Attime t + At, the value of the replicating portfolio is:

Visat = NstStvac + NpeBryae

which implies that:
AI/t- = NS,tASt + NB,tABt'

As At — 0, we have that:
dV = NgdS + NgdB
= Ns¢dS + Ng(rBdt) (1)
= N¢dS + (NgB)rdt,
where in the second line we used the fact that dB = rBdt.?

Now, the replication works in the following way. We determine first how many shares of
the stock to buy or sell, depending on whether the option is a call or put. Then, given the
number of shares that we need to hold and the value of the portfolio at time t, we see
how much money we need to borrow or invest at the risk-free rate to keep our portfolio
self-financing.

The amount invested in the risk-free bonds is such that NgB = V — NgS. This is a similar
condition to the one imposed in classical portfolio theory where we keep the sum of the
portfolio weights equal to one. Thus, if we replace NzB in (1) we get that

dV = r(V — NgS)dt + NsdS. 2)

Equation (2) captures the dynamics of the replicating portfolio needed to hedge the option
that the trading desk just sold. As such, it represents the dynamics of the long position
that the desk will hold to offset the risk of the short position. Thus, this is a classical
long-short strategy. If the hedge is successful, the dynamics of both legs must also be
the same.

"To simplify notation, | will suppress the dependence on time whenever there is no ambiguity.
2Note thatif B = Ke "TY then dB = rKe "T-Ydt = rBdt.



The Sales Team Problem

As mentioned before, the sales team just sold a European option H written on a non-
dividend paying stock S with maturity T to a client. Since our objective is to make sure
that the value of the derivative is equal to the replicating portfolio, let us abuse notation
and call for the moment also V the value of the derivative. If we assume thatV =V (S, t)
is a smooth function of S and t, then Ito’s Lemma implies that:

dV—anS+ 107V alSZ+a dt
as 2 652( ) at
av 1 GZV av
= —dS + S?2—dt + —dt,

as 277 as2 ot

where in the second we have used the fact that (dS)? = ¢2S%dt. We can arrange the
previous expression so that:

dVv = 1 25262V+6V dt+a ds. 3
—\29° 952 T ¢ s 3)

Equation (3) captures the dynamics of the short position.

Getting the Hedge to Work

We want to make sure that the hedge works so that the changes in value of the option
equal the changes of the replicating portfolio. Therefore, replication will succeed if we can
determine a such that both dynamics are the same:

E 25282V+6V dt+anS— V — NgS)dt + NsdS 4
552 T 57 3 r( sS) s (4)
Changes in the value of the option Changes in the replicating portfolio

Equation (4) shows that replication will indeed work if:

N = av

ST as

This is a fundamental relationship in derivatives pricing. It states that the number of

shares needed to replicate the derivative is equal its sensitivity to the underlying asset.

The street name of this quantity is the delta (A) of the derivative. Also, a by-product of

choosing Ng to equal the delta of the derivative is that it really does not matter what

drift we have for the stock. We will use this fact in a moment to define the risk-neutral
probabilities in continuous-time.

(5)



Second, it must be the case that:

—0%S V—-5S—

1 262V+6V_ v
2 asz T ar T s

Therefore:
1 25262V+ SaV+aV V=0 6
292 952 T Pes T TV T Y ©)

subject to I = F(S7).

Equation (6) is the celebrated Black-Scholes partial differential equation (PDE) which
allowed the authors to compute their influential formula in 1973! Solving PDEs, in general,
is very hard so we will resort to a different approach to price European call and put
options.

The Risk-Neutral Pricing Approach

The replicating approach is insensitive to the drift of the stock. As a matter of fact, the drift
might even change based on whose thinking aboutthe asset. Since the previous reasoning
is silent about the drift and the type of investor pricing the asset, we could assume in our
reasoning that the investor doing the replication is risk-neutral. TYhe attitude towards risk
of whoever is doing the replication should not affect the logic of the argument.

The Drift of the Stock is Irrelevant

In our model, the stock price follows a geometric Brownian motion such that:
dS = uSdt + aSdW. (7)

In equilibrium, if the stock returns co-vary positively with the returns of the market, as it
is the case for most stocks, the drift u of the stock should be greater than the risk-free
rate r. Indeed, risk-averse investors would command a risk-premium to hold a risky asset
that increases their exposure to the market.

However, equation (4) shows that the replication would work with any value for u. Since
the parameter pis at our disposal, let’s see what happens if we choose u = r, the risk-free
rate. We can then re-write (7) as:

dS =rSdt + aSdW™. (8)



We can now apply Ito’s lemma to the derivative to find:

dV = Sav+1 25262V+6V dt + SaV dw*
“\™%s 727 352 T B¢ 9255

=rVdt + SaV aw*
=r 7535 :

Equation (9) says that if the expected return of the stock is the risk-free rate, then the
expected return of any derivative written on the stock is also the risk-free rate.

This is exactly how an economy populated by risk-neutral investors looks like.® The ex-
pected return of any non-dividend paying asset is the risk-free rate since risk-neutral
investors, by definition, do not care about risk and hence do not command a risk-premium
to hold risky assets in their portfolios.

With this insight, the valuation of the derivative is simple. In a risk-neutral world, the value
of any risky asset is equal to its expected payoff discounted at the risk-free rate,

V =e "TE"(F(Sr)). (10)

Therefore, to value a European call or put option, all we need to do is to compute the
expectation of the final payoff assuming that the drift of the stock is equalto r, and then
discount at the expected payoff at the risk-free rate.

Equation (10) presents an alternative approach to compute the price of a derivative
without having to solve the PDE defined in (6). Nevertheless, the risk-neutral approach is
valid because we were able to replicate the derivative in the first place by trading in the
stock and the risk-free bond.

Pricing a European Call Option

We can now use (10) to compute the premium of a European call option written on a
non-dividend paying stock with maturity T and strike price K. The price of the call should

then be
C=e"TE((Sr— K)n{5T>K})

= e TE" (Srlgs,>ky) — e 7T ET (Klgs;sx)
= S (D(dl) - Ke_TT q)(dz),

3Note that the probability distribution of the Brownian motion {W;} in a risk-neutral world need not
correspond to the physical measure that we observe in real world, hence the asterisk on top of it.



where L
In(S/K) + (r + EO'Z)T

d; = ,
! oVT
d, = d; — oVT.

Note that in the third line we have used a property on partial expectations derived earlier.
We now have a concrete valuation formula for the price of a European call!

Let’s see how the call price varies with different values of the stock price.

Price
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Figure 1: The figure plots the Black-Scholes call premium C(S) if r = 0.05, ¢ = 0.45,
T =1and K = 100. It also shows the call option payoff given by max(S — K, 0)
and the lower bound for a European call given by max(S — Ke T, 0).

The figure above shows that the call premium is an increasing function of the stock price,
keeping everything else constant. This makes sense since for a given strike price, a higher
stock price implies that the call is deeper in-the-money. In other words, the derivative of
the call price with respect to the stock price must be positive. The graph also shows that
the function is convex, meaning that the second derivative of the call price with respect
to the stock price is also positive.
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Call Delta

Practitioners usually call the number of shares required to make the replication work
the call delta. Equation (5) shows that the number of shares Ng required to hedge the
European call is the partial derivative of the call price with respect the current stock
price. Now that we have an expression for the call price, we can compute the call delta
explicitly.

Call Delta

In the Black-Scholes model, the delta of the European callis given by:

aC_ d 11
g—‘b( 1)- (11)

Proof

We need to differentiate C with respectto S. Note that d, and d, are also functions of
S:
0C _ (S b)) 70 0(dr)

as as as

_ 0 d(dq) _r0®(d3)

=d(dy)+S S — Ke S

— o(dy) + 50 () 2L _ KeT @' (dy) 22

= ®(d) + 5@ (dy) 5o — Ke T @' (dy) ¢

=d(dy) + (SP'(dy) — Ke T d'(dy)) o
~ SoVT

= ®(dy),

where in the fourth line we used Equation (13). ]

The call delta is then the slope coefficient of the call price with respect to the stock price.
Because ®(d,) > 0, the function C(S) must be increasingin S.

Therefore, the delta of the call measures how sensitive is the call premium to small
changes in the stock price. This is exactly why the trader needs to hold delta shares of the
stock to hedge the risk of the short call position.

Finally, we have that for a European call option:
C =NgS+ NgB =Sd(dy) —Ke T d(dy)
which because of (11) implies that:

Np = — ®(d,)
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Figure 2: The figure plots the Black-Scholes call premium C(S) wherer = 0.05,0 = 0.45,
T = 1and K = 100, and shows the tangent line at S = 100 whose slope
coefficient is the delta of the call given by ®(d;).



Therefore, to replicate a European call option we need to go long ®(d,) shares of stock
and short ®(d,) risk-free bonds with face value K and maturity T. The call can then be
seen as a levered position in the underlying asset. Also, note that since 0 < ®(d4) < 1,
the delta of the call for a non-dividend paying asset is bounded between 0 and 1. As we
saw in the previous figure, for a given spot price, the delta of the call represents the slope
coefficient of the tangency line at that point.

Pricing a European Put Option

Consider now a European put option with the same characteristics as the previous call.
According to put-call parity, it must be the case that:

C-P=S—Ke T

Hence,
P=C- (S—Ke‘rT)

=Sd(dy) —KeTd(dy) — (S —Ke™™)
=Ke (1 - d(dy)) —S(1 — @(dy))
=Ke T d(—d,) — S d(—d,).

Example 1. Consider a non-dividend paying stock that currently trades for $100. The
risk-free rate is 4% per year, continuously compounded and constant for all maturities.
The instantaneous volatility of returns is 25% per year. Consider at-the-money call and
put options written on the stock with maturity 9 months. Then,

_ 1n(100/100) + (0.04 + 0.5(0.25)?)(0.75)

! 0.25v0.75
d, = 0.2468 — 0.25v/0.75 = 0.0303.

= 0.2468,

Therefore, ®(d{) = 0.5975 and ®(d,) = 0.5121, which implies that:

C =100 X 0.5975 — 100e~904%0.75 % 0.5121 = $10.05,
P = 100e 7004075 x (1 — 0.5121) — 100 x (1 — 0.5975) = $7.10.
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Figure 3: The figure plots the Black-Scholes put premium P(S) if r = 0.05,0 = 0.45,
T =1and K = 100. It also shows the put option payoff given by max(K — S, 0)
and the lower bound for a European put given by max(Ke™"T — §,0).
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Put Delta

We can use put-call parity to compute Ns for the put:

dapP

ER
_A(C-S+Ke™)

Ng

as
=®(dy) -1
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Figure 4: The figure plots the Black-Scholes put premium P(S) where r = 0.05, 0 = 0.45,
T = 1and K = 100, and shows the tangent line at § = 100 whose slope

coefficient is the delta of the put given by — ®(—d;) = ®(d;) — 1.

The fact that we also have P = NgS + NgB implies that:

Therefore, to replicate a European put option, we need to go short ®(—d; ) shares of stock
and long ®(—d,) risk-free bonds with face value K and maturity T.

11



Finishing In-The-Money

Remember that we showed that:
P*(St >T)=F (H{ST>K}) = d(dy),

which also implies

=1-2(dy)
= ®(—dy).
Therefore, the risk-neutral probability that the call will expire in-the-money is equal to

®(d,) whereas the risk-neutral probability that the put finishes in-the-money is given by
P (—dy).

Summary

Black-Scholes Model for a Non-Dividend Paying Stock

Consider a non-dividend paying stock S that follows a GBM under the risk-neutral
measure:

dS =rSdt + oSdz

The price of European call and put options with strike price K and time-to-maturity
T are given by:

C=Sd(d,)—Ke T d(d,),

P=Ke T d(—d;,) — Sy (—d,),

where L
In(S/K) + (r + EO'Z)T
d, = )
! oVT
d, =d, — oVT.

Furthermore, the delta of the callis given by ®(d;) whereas the delta of the put is
computed as — ®(—d,).

Finally, the risk-neutral probability that the call will expire in-the-money is equal
to ®(d,) whereas the risk-neutral probability that the put finishes in-the-money is
given by ®(—d,).
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The Impact of Volatility

One of the most important determinants of option prices in the Black-Scholes model is
volatility.

black_scholes_vega
For European call and put options we have that:

= ——SCD’ d VT >0 12
5 2 (d1) . (12)
Proof

We start by differentiating C with respect to a:

oC _ 90y 70 b(da)

do do do
= Sd)’(dl)% —Ke™'T (D’(dz)%
do do
d(d; — oVT)
do
= (S®'(dy) —Ke T ®'(dy)) % +Ke T &' (dVT

_ ! ddy T &'
=S (dl)%—l{e d (d,)

0

= S (d)VT.
Note that because of put-call parity we also have that:
C—P=S§ Ke‘TT:a—C a—P
B do do
aP acC
= = — = —
do do

=S (d)VT.
0

Hence, both European call and put options increase in value as volatility increases. More-
over, this also implies that there is a one-on-one relationship between option value and
volatility, i.e., we can use volatility to quote prices and vice-versa. The volatility that
matches the observed price of an option is called the implied volatility.

13
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Figure 5: The figure shows the Black-Scholes call premium for different levels of volatility
wherer = 0.05,T = 1 and K = 100. The dashed line represents the lower
bound for the European call and the solid black line is the call payoff at maturity.
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Implied Volatility

Example 2. Consider a non-dividend paying stock that currently trades for $100. The
risk-free rate is 5% per year, continuously compounded and constant for all maturities.
An ATM European call option written on the stock with maturity 12 months trades for $16.
We can check that 0 = 34.66% prices the call correctly:

In(100/100) + (0.05 + 0.5(0.3466)%)(1
d, = (100/100) 33466\5 ( )M — 03176,

d, = 0.3358 — 0.3466V1 = —0.0290.

Therefore, ®(d{) = 0.6246 and ®(d,) = 0.4884, which implies that:
C = 100(0.6246) — 100e~%95(1)(0.4884) = $16.00.

Therefore, a volatility of 34.66% per year gives a call price of $16. [l

How can we compute the implied volatility? Unfortunately, it is not possible to solve
analytically for the implied volatility. For a call option, for example, it involves solving
numerically for o:

Co = C(Gimp)

Alternatively, we could tabulate the price of a call option for different values of o (using
the same parameters as the previous example):

o 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
C 5.28 6.80 8.59 10.45 12.34 14.23 16.13  18.02

We could see that 0 = 35% gives a price of $16.13 for the call, which is quite close to the
true implied volatility of 34.66%.

Appendix

In this section we present a useful result that will allow us to prove the formula for the A
and I for European call and put options.
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Figure 6: The figure shows the Black-Scholes call premium C (o) as a function of o where
S =100,r = 0.05,T = 1and K = 100. We can see that for C = $16 the
corresponding volatility is approximately 35%.
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Indeed, we have that:

(d2)* = (dy — oVT)?
= (dy)? — 2d,0VT + o2T
= (d1)? = 2(n(S/K) + (r + 362)T) + 02T
= (d,)? — 2(In(S/K) + rT)

Hence,

® (d) = 1 Ly
(dz) = ==e >

_ 1 e—%((dl)z—z(ln(S/K)H‘T))

Van
S /
= Ze™®'(dy)

which implies, ) ,
S® (dy) =Ke T (d,). (13)

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin451.

Problem 1. What is the price of a European put option on a non-dividend-paying stock
when the stock price is $69, the strike price is $70, the risk-free interest rate is 5% per
annum, the volatility is 35% per annum, and the time to maturity is six months?

Problem 2. A call option on a non-dividend-paying stock has a market price of $2.61.
The stock price is $15, the exercise price is $13, the time to maturity is three months, and
the risk-free interest rate is 5% per annum. What is the implied volatility?

Problem 3. Consider an option on a non-dividend-paying stock when the stock price is
$30, the exercise price is $29, the risk-free interest rate is 5%, the volatility is 25% per
annum, and the time to maturity is four months.

a. What is the price of the option if itis a European call?
b. What is the price of the option if itis an American call?
c. What s the price of the option if itis a European put?
d. Verify that put-call parity holds.
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Problem 4. Consider a European call option expiring in 6 months and with strike price
equal to $38 on a non-dividend paying stock that currently trades for $40. Interestingly,
the volatility of the stock is zero. If the risk-free rate is 6% per year with continuous
compounding, what is the price of the option?

Problem 5. Consider a European call option expiring in 6 months and with strike price
equal to $42 on a non-dividend paying stock that currently trades for $40. Interestingly,
the volatility of the stock is zero. If the risk-free rate is 6% per year with continuous
compounding, what is the price of the option?

Problem 6. Consider a European put option expiring in 9 months and strike price $102
written on a non-dividend paying stock. The risk-free rate is 8% per year with continuous
compounding and the stock price is $100. What is the minimum price for the put that
would allow you to compute its implied volatility?

Problem 7. Suppose thatthe sales team of a trading desk just sold a European call option
contract, thatis 100 European call options, to an important client. The contract is written
on a non-dividend paying stock that trades for $210, expires in two years and has a strike
price of $215. The risk-free rate is 6% per year with continuous compounding. A trader of
the desk estimate that the volatility of the stock returns is 45% and expected to remain
constant for the life of the contract.

a. How many shares of the stock does the trader need to buy/sell initially in order to
hedge the exposure created by the sale of the contract?

b. How many risk-free bonds with face value $215 and expiring in two years does the
trader need to buy/sell in order to make sure that the strategy is self-financing?

Problem 8. According to the Black-Scholes model, what is the price of a European put
option on a non-dividend-paying stock when the stock price is $109, the strike price is
$106, the risk-free interest rate is 8% per year, the volatility is 29% per year, and the time
to maturity is 14 months?

Problem 9. According to the Black-Scholes model, what is the price of a European call
option on a non-dividend-paying stock when the stock price is $85, the strike price is
$107, the risk-free interest rate is 7% per year, the volatility is 46% per year, and the time
to maturity is 6 months?

Problem 10. According to the Black-Scholes model, what is the delta of a European put
option on a non-dividend-paying stock when the stock price is $92, the strike price is
$109, the risk-free interest rate is 6% per year, the volatility is 65% per year, and the time
to maturity is 8 months?

18



	The Replicating Portfolio Approach
	The Traders' Problem
	The Sales Team Problem
	Getting the Hedge to Work

	The Risk-Neutral Pricing Approach
	The Drift of the Stock is Irrelevant
	Pricing a European Call Option
	Call Delta
	Pricing a European Put Option
	Put Delta
	Finishing In-The-Money
	Summary

	The Impact of Volatility
	Implied Volatility

	Appendix
	Practice Problems

