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The Black-Scholes Model

TheBlack-Scholes formula is one of themost celebrated results in finance. In this chapter

we show how to replicate the payoff of a European call or put option written on a non-

dividend paying stock by dynamically trading in the stock and a risk-free bond. The

replication strategy is self-financing, and therefore determines the no-arbitrage price of

the option.

A fundamental side-effect of the replication strategy is that thepartial differential equation

(PDE) that characterizes the price of the option does not depend on the real dynamics

of the stock. We could obtain the same pricing equation by using any other risk-premia.

This suggests a powerful idea to price the option. Let us assume that all investors are

risk-neutral. If this was the case, the replication argument that gives the correct price

of the option would still hold. However, in such a world, all assets should be priced by

discounting their payoffs at the risk-free rate.

The risk-neutral approach provides us with a simpler way to derive the Black-Scholes

formula. Since the risk-neutral dynamics of the non-dividend paying stock are driven by

a GBM with drift equal to the risk-free rate, the stock price at maturity is log-normally

distributed and allows us to apply the formulas for partial expectations in order to price

the option.

The Replicating Portfolio Approach

In order to price a call or put option, we take the point of view of a trading desk that makes

themarket for option contracts. Their sales team just sold a European option𝐻written

on a non-dividend paying stock 𝑆with maturity 𝑇 to a client. At this point, the traders of

the desk are in charge of hedging the exposure of the short position.

The Traders’ Problem

Since the option depends on the stock, it makes sense to try to hedge the exposure by

trading dynamically in the stock and a risk-free bond. Specifically, we will try to replicate

the option by buying (or selling)𝑁𝑆,𝑡 units of the stock and 𝑁𝐵,𝑡 units of a zero-coupon
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bond with face value𝐾 andmaturity 𝑇, respectively, at each time 𝑡 ≤ 𝑇.1 If we call 𝑉 the

value of such replicating portfolio, we have that at time 𝑡 < 𝑇:

𝑉𝑡 = 𝑁𝑆,𝑡𝑆𝑡 + 𝑁𝐵,𝑡𝐵𝑡.

In order to replicate the option, we want to make sure that the value of the portfolio at

time 𝑡 = 𝑇 equals the payoff of the derivative, that is:

𝑉𝑇 = 𝐹(𝑆𝑇).

For example, if we consider a European call option then𝐹(𝑆𝑇) = max(𝑆𝑇−𝐾, 0),whereas

for a European put option we have that 𝐹(𝑆𝑇) = max(𝐾 − 𝑆𝑇, 0).

At time 𝑡 + Δ𝑡, the value of the replicating portfolio is:

𝑉𝑡+Δ𝑡 = 𝑁𝑆,𝑡𝑆𝑡+Δ𝑡 + 𝑁𝐵,𝑡𝐵𝑡+Δ𝑡,

which implies that:

Δ𝑉𝑡 = 𝑁𝑆,𝑡Δ𝑆𝑡 + 𝑁𝐵,𝑡Δ𝐵𝑡.

As Δ𝑡 → 0, we have that:
𝑑𝑉 = 𝑁𝑆𝑑𝑆 + 𝑁𝐵𝑑𝐵

= 𝑁𝑆𝑑𝑆 + 𝑁𝐵(𝑟𝐵𝑑𝑡)

= 𝑁𝑆𝑑𝑆 + (𝑁𝐵𝐵)𝑟𝑑𝑡,

(1)

where in the second line we used the fact that 𝑑𝐵 = 𝑟𝐵𝑑𝑡.2

Now, the replication works in the following way. We determine first howmany shares of

the stock to buy or sell, depending on whether the option is a call or put. Then, given the

number of shares that we need to hold and the value of the portfolio at time 𝑡, we see

howmuchmoney we need to borrow or invest at the risk-free rate to keep our portfolio

self-financing.

The amount invested in the risk-free bonds is such that𝑁𝐵𝐵 = 𝑉 − 𝑁𝑆𝑆. This is a similar

condition to the one imposed in classical portfolio theory where we keep the sum of the

portfolio weights equal to one. Thus, if we replace𝑁𝐵𝐵 in (1) we get that

𝑑𝑉 = 𝑟(𝑉 − 𝑁𝑆𝑆)𝑑𝑡 + 𝑁𝑆𝑑𝑆. (2)

Equation (2) captures the dynamics of the replicating portfolio needed to hedge the option

that the trading desk just sold. As such, it represents the dynamics of the long position

that the desk will hold to offset the risk of the short position. Thus, this is a classical

long-short strategy. If the hedge is successful, the dynamics of both legsmust also be

the same.

1To simplify notation, I will suppress the dependence on time whenever there is no ambiguity.
2Note that if𝐵 = 𝐾𝑒−𝑟(𝑇−𝑡), then 𝑑𝐵 = 𝑟𝐾𝑒−𝑟(𝑇−𝑡)𝑑𝑡 = 𝑟𝐵𝑑𝑡.
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The Sales Team Problem

As mentioned before, the sales team just sold a European option 𝐻 written on a non-

dividend paying stock 𝑆with maturity 𝑇 to a client. Since our objective is to make sure

that the value of the derivative is equal to the replicating portfolio, let us abuse notation

and call for the moment also 𝑉 the value of the derivative. If we assume that 𝑉 = 𝑉(𝑆, 𝑡)

is a smooth function of 𝑆 and 𝑡, then Ito’s Lemma implies that:

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

1

2

𝜕2𝑉

𝜕𝑆2
(𝑑𝑆)2 +

𝜕𝑉

𝜕𝑡
𝑑𝑡

=
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
𝑑𝑡 +

𝜕𝑉

𝜕𝑡
𝑑𝑡,

where in the second we have used the fact that (𝑑𝑆)2 = 𝜎2𝑆2𝑑𝑡.We can arrange the

previous expression so that:

𝑑𝑉 = �
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+
𝜕𝑉

𝜕𝑡
�𝑑𝑡 +

𝜕𝑉

𝜕𝑆
𝑑𝑆. (3)

Equation (3) captures the dynamics of the short position.

Getting the Hedge to Work

We want to make sure that the hedge works so that the changes in value of the option

equal the changes of the replicating portfolio. Therefore, replication will succeed if we can

determine 𝛼 such that both dynamics are the same:

�
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+
𝜕𝑉

𝜕𝑡
�𝑑𝑡 +

𝜕𝑉

𝜕𝑆
𝑑𝑆

���������������������
Changes in the value of the option

= 𝑟(𝑉 − 𝑁𝑆𝑆)𝑑𝑡 + 𝑁𝑆𝑑𝑆
���������������

Changes in the replicating portfolio

(4)

Equation (4) shows that replication will indeed work if:

𝑁𝑆 =
𝜕𝑉

𝜕𝑆
. (5)

This is a fundamental relationship in derivatives pricing. It states that the number of

shares needed to replicate the derivative is equal its sensitivity to the underlying asset.

The street name of this quantity is the delta (Δ) of the derivative. Also, a by-product of

choosing 𝑁𝑆 to equal the delta of the derivative is that it really does not matter what

drift we have for the stock. We will use this fact in a moment to define the risk-neutral

probabilities in continuous-time.
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Second, it must be the case that:

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+
𝜕𝑉

𝜕𝑡
= 𝑟�𝑉 − 𝑆

𝜕𝑉

𝜕𝑆
�

Therefore:
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
𝜕𝑉

𝜕𝑡
− 𝑟𝑉 = 0, (6)

subject to 𝑉𝑇 = 𝐹(𝑆𝑇).

Equation (6) is the celebrated Black-Scholes partial differential equation (PDE) which

allowed the authors to compute their influential formula in 1973! Solving PDEs, in general,

is very hard so we will resort to a different approach to price European call and put

options.

The Risk-Neutral Pricing Approach

The replicating approach is insensitive to the drift of the stock. As amatter of fact, the drift

might evenchangebasedonwhose thinkingabout theasset. Since theprevious reasoning

is silent about the drift and the type of investor pricing the asset, we could assume in our

reasoning that the investor doing the replication is risk-neutral. TYhe attitude towards risk

of whoever is doing the replication should not affect the logic of the argument.

The Drift of the Stock is Irrelevant

In our model, the stock price follows a geometric Brownianmotion such that:

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊. (7)

In equilibrium, if the stock returns co-vary positively with the returns of the market, as it

is the case for most stocks, the drift 𝜇 of the stock should be greater than the risk-free

rate 𝑟. Indeed, risk-averse investors would command a risk-premium to hold a risky asset

that increases their exposure to themarket.

However, equation (4) shows that the replication would work with any value for 𝜇. Since

the parameter𝜇 is at our disposal, let’s seewhat happens if we choose𝜇 = 𝑟, the risk-free

rate. We can then re-write (7) as:

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊∗. (8)
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We can now apply Ito’s lemma to the derivative to find:

𝑑𝑉 = �𝑟𝑆
𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+
𝜕𝑉

𝜕𝑡
�𝑑𝑡 + �𝜎𝑆

𝜕𝑉

𝜕𝑆
�𝑑𝑊∗

= 𝑟𝑉𝑑𝑡 + �𝜎𝑆
𝜕𝑉

𝜕𝑆
�𝑑𝑊∗.

(9)

Equation (9) says that if the expected return of the stock is the risk-free rate, then the

expected return of any derivative written on the stock is also the risk-free rate.

This is exactly how an economy populated by risk-neutral investors looks like.3 The ex-

pected return of any non-dividend paying asset is the risk-free rate since risk-neutral

investors, by definition, do not care about risk and hence do not commanda risk-premium

to hold risky assets in their portfolios.

With this insight, the valuation of the derivative is simple. In a risk-neutral world, the value

of any risky asset is equal to its expected payoff discounted at the risk-free rate,

𝑉 = 𝑒−𝑟𝑇 E∗(𝐹(𝑆𝑇)). (10)

Therefore, to value a European call or put option, all we need to do is to compute the

expectation of the final payoff assuming that the drift of the stock is equal to 𝑟, and then

discount at the expected payoff at the risk-free rate.

Equation (10) presents an alternative approach to compute the price of a derivative

without having to solve the PDE defined in (6). Nevertheless, the risk-neutral approach is

valid because we were able to replicate the derivative in the first place by trading in the

stock and the risk-free bond.

Pricing a European Call Option

We can now use (10) to compute the premium of a European call option written on a

non-dividend paying stock with maturity 𝑇 and strike price𝐾. The price of the call should

then be
𝐶 = 𝑒−𝑟𝑇 E∗ �(𝑆𝑇 − 𝐾)𝟙{𝑆𝑇>𝐾}�

= 𝑒−𝑟𝑇 E∗ �𝑆𝑇𝟙{𝑆𝑇>𝐾}� − 𝑒−𝑟𝑇 E∗ �𝐾𝟙{𝑆𝑇>𝐾}�

= 𝑆Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2),

3Note that the probability distribution of the Brownian motion {𝑊∗
𝑡 } in a risk-neutral world need not

correspond to the physical measure that we observe in real world, hence the asterisk on top of it.
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where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 +

1

2
𝜎2)𝑇

𝜎√𝑇
,

𝑑2 = 𝑑1 − 𝜎√𝑇.

Note that in the third line we have used a property on partial expectations derived earlier.

We now have a concrete valuation formula for the price of a European call!

Let’s see how the call price varies with different values of the stock price.
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Figure 1: The figure plots the Black-Scholes call premium 𝐶(𝑆) if 𝑟 = 0.05, 𝜎 = 0.45,

𝑇 = 1 and𝐾 = 100. It also shows the call option payoff given bymax(𝑆 − 𝐾, 0)

and the lower bound for a European call given bymax(𝑆 − 𝐾𝑒−𝑟𝑇, 0).

The figure above shows that the call premium is an increasing function of the stock price,

keeping everything else constant. This makes sense since for a given strike price, a higher

stock price implies that the call is deeper in-the-money. In other words, the derivative of

the call price with respect to the stock price must be positive. The graph also shows that

the function is convex, meaning that the second derivative of the call price with respect

to the stock price is also positive.
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Call Delta

Practitioners usually call the number of shares required to make the replication work

the call delta. Equation (5) shows that the number of shares 𝑁𝑆 required to hedge the

European call is the partial derivative of the call price with respect the current stock

price. Now that we have an expression for the call price, we can compute the call delta

explicitly.

Call Delta

In the Black-Scholes model, the delta of the European call is given by:

𝜕𝐶

𝜕𝑆
= Φ(𝑑1). (11)

Proof

We need to differentiate 𝐶 with respect to 𝑆. Note that 𝑑1 and 𝑑2 are also functions of

𝑆:
𝜕𝐶

𝜕𝑆
=
𝜕 (𝑆Φ(𝑑1))

𝜕𝑆
− 𝐾𝑒−𝑟𝑇

𝜕Φ(𝑑2)

𝜕𝑆

= Φ(𝑑1) + 𝑆
𝜕Φ(𝑑1)

𝜕𝑆
− 𝐾𝑒−𝑟𝑇

𝜕Φ(𝑑2)

𝜕𝑆

= Φ(𝑑1) + 𝑆Φ
′
(𝑑1)

𝜕𝑑1

𝜕𝑆
− 𝐾𝑒−𝑟𝑇Φ

′
(𝑑2)

𝜕𝑑2

𝜕𝑆

= Φ(𝑑1) + �𝑆Φ
′
(𝑑1) − 𝐾𝑒−𝑟𝑇Φ

′
(𝑑2)��������������������

=0

1

𝑆𝜎√𝑇

= Φ(𝑑1),

where in the fourth line we used Equation (13).

The call delta is then the slope coefficient of the call price with respect to the stock price.

BecauseΦ(𝑑1) > 0, the function 𝐶(𝑆)must be increasing in 𝑆.

Therefore, the delta of the call measures how sensitive is the call premium to small

changes in the stock price. This is exactly why the trader needs to hold delta shares of the

stock to hedge the risk of the short call position.

Finally, we have that for a European call option:

𝐶 = 𝑁𝑆𝑆 + 𝑁𝐵𝐵 = 𝑆Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2)

which because of (11) implies that:

𝑁𝐵 = −Φ(𝑑2)
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Figure 2: The figure plots the Black-Scholes call premium 𝐶(𝑆)where 𝑟 = 0.05, 𝜎 = 0.45,

𝑇 = 1 and 𝐾 = 100, and shows the tangent line at 𝑆 = 100 whose slope

coefficient is the delta of the call given byΦ(𝑑1).
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Therefore, to replicate a European call option we need to go long Φ(𝑑1) shares of stock

and short Φ(𝑑2) risk-free bonds with face value𝐾 andmaturity 𝑇. The call can then be

seen as a levered position in the underlying asset. Also, note that since 0 < Φ(𝑑1) < 1,

the delta of the call for a non-dividend paying asset is bounded between 0 and 1. As we

saw in the previous figure, for a given spot price, the delta of the call represents the slope

coefficient of the tangency line at that point.

Pricing a European Put Option

Consider now a European put option with the same characteristics as the previous call.

According to put-call parity, it must be the case that:

𝐶 − 𝑃 = 𝑆 − 𝐾𝑒−𝑟𝑇

Hence,

𝑃 = 𝐶 − (𝑆 − 𝐾𝑒−𝑟𝑇)

= 𝑆Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2) − (𝑆 − 𝐾𝑒−𝑟𝑇)

= 𝐾𝑒−𝑟𝑇(1 − Φ(𝑑2)) − 𝑆(1 − Φ(𝑑1))

= 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆Φ(−𝑑1).

Example 1. Consider a non-dividend paying stock that currently trades for $100. The

risk-free rate is 4% per year, continuously compounded and constant for all maturities.

The instantaneous volatility of returns is 25% per year. Consider at-the-money call and

put options written on the stock with maturity 9 months. Then,

𝑑1 =
ln(100/100) + (0.04 + 0.5(0.25)2)(0.75)

0.25√0.75
= 0.2468,

𝑑2 = 0.2468 − 0.25√0.75 = 0.0303.

Therefore,Φ(𝑑1) = 0.5975 andΦ(𝑑2) = 0.5121, which implies that:

𝐶 = 100 × 0.5975 − 100𝑒−0.04×0.75 × 0.5121 = $10.05,

𝑃 = 100𝑒−0.04(0.75) × (1 − 0.5121) − 100 × (1 − 0.5975) = $7.10.
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Figure 3: The figure plots the Black-Scholes put premium 𝑃(𝑆) if 𝑟 = 0.05, 𝜎 = 0.45,

𝑇 = 1 and𝐾 = 100. It also shows the put option payoff given bymax(𝐾 − 𝑆, 0)

and the lower bound for a European put given bymax(𝐾𝑒−𝑟𝑇 − 𝑆, 0).
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Put Delta

We can use put-call parity to compute𝑁𝑆 for the put:

𝑁𝑆 =
𝜕𝑃

𝜕𝑆

=
𝜕(𝐶 − 𝑆 + 𝐾𝑒−𝑟𝑇)

𝜕𝑆

= Φ(𝑑1) − 1

= −Φ(−𝑑1) < 0.
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Figure 4: The figure plots the Black-Scholes put premium 𝑃(𝑆)where 𝑟 = 0.05, 𝜎 = 0.45,

𝑇 = 1 and 𝐾 = 100, and shows the tangent line at 𝑆 = 100 whose slope

coefficient is the delta of the put given by−Φ(−𝑑1) = Φ(𝑑1) − 1.

The fact that we also have 𝑃 = 𝑁𝑆𝑆 + 𝑁𝐵𝐵 implies that:

𝛽 = Φ(−𝑑2) > 0.

Therefore, to replicate a European put option, we need to go shortΦ(−𝑑1) shares of stock

and long Φ(−𝑑2) risk-free bonds with face value𝐾 andmaturity 𝑇.
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Finishing In-The-Money

Remember that we showed that:

P
∗(𝑆𝑇 > 𝑇) = E

∗ �𝟙{𝑆𝑇>𝐾}� = Φ(𝑑2),

which also implies

P
∗(𝑆𝑇 < 𝐾) = 1 − P

∗(𝑆𝑇 > 𝐾)

= 1 − Φ(𝑑2)

= Φ(−𝑑2).

Therefore, the risk-neutral probability that the call will expire in-the-money is equal to

Φ(𝑑2)whereas the risk-neutral probability that the put finishes in-the-money is given by

Φ(−𝑑2).

Summary

Black-Scholes Model for a Non-Dividend Paying Stock

Consider a non-dividend paying stock 𝑆 that follows a GBM under the risk-neutral

measure:

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧

The price of European call and put options with strike price𝐾 and time-to-maturity

𝑇 are given by:

𝐶 = 𝑆Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2),

𝑃 = 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆0Φ(−𝑑1),

where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 +

1

2
𝜎2)𝑇

𝜎√𝑇
,

𝑑2 = 𝑑1 − 𝜎√𝑇.

Furthermore, the delta of the call is given byΦ(𝑑1)whereas the delta of the put is

computed as−Φ(−𝑑1).

Finally, the risk-neutral probability that the call will expire in-the-money is equal

toΦ(𝑑2)whereas the risk-neutral probability that the put finishes in-the-money is

given byΦ(−𝑑2).
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The Impact of Volatility

One of the most important determinants of option prices in the Black-Scholes model is

volatility.

black_scholes_vega

For European call and put options we have that:

𝜕𝐶

𝜕𝜎
=
𝜕𝑃

𝜕𝜎
= 𝑆Φ

′
(𝑑1)√𝑇 > 0. (12)

Proof

We start by differentiating 𝐶with respect to 𝜎:

𝜕𝐶

𝜕𝜎
= 𝑆

𝜕Φ(𝑑1)

𝜕𝜎
− 𝐾𝑒−𝑟𝑇

𝜕Φ(𝑑2)

𝜕𝜎

= 𝑆Φ
′
(𝑑1)

𝜕𝑑1

𝜕𝜎
− 𝐾𝑒−𝑟𝑇Φ

′
(𝑑2)

𝜕𝑑2

𝜕𝜎

= 𝑆Φ
′
(𝑑1)

𝜕𝑑1

𝜕𝜎
− 𝐾𝑒−𝑟𝑇Φ

′
(𝑑2)

𝜕(𝑑1 − 𝜎√𝑇)

𝜕𝜎

= �𝑆Φ
′
(𝑑1) − 𝐾𝑒−𝑟𝑇Φ

′
(𝑑2)��������������������

=0

𝜕𝑑1

𝜕𝜎
+ 𝐾𝑒−𝑟𝑇Φ

′
(𝑑2)√𝑇

= 𝑆Φ
′
(𝑑1)√𝑇.

Note that because of put-call parity we also have that:

𝐶 − 𝑃 = 𝑆 − 𝐾𝑒−𝑟𝑇 ⇒
𝜕𝐶

𝜕𝜎
−
𝜕𝑃

𝜕𝜎

= 0 ⇒
𝜕𝑃

𝜕𝜎
=
𝜕𝐶

𝜕𝜎

= 𝑆Φ
′
(𝑑1)√𝑇.

Hence, both European call and put options increase in value as volatility increases. More-

over, this also implies that there is a one-on-one relationship between option value and

volatility, i.e., we can use volatility to quote prices and vice-versa. The volatility that

matches the observed price of an option is called the implied volatility.
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Figure 5: The figure shows the Black-Scholes call premium for different levels of volatility

where 𝑟 = 0.05, 𝑇 = 1 and 𝐾 = 100. The dashed line represents the lower

bound for the European call and the solid black line is the call payoff atmaturity.
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Implied Volatility

Example 2. Consider a non-dividend paying stock that currently trades for $100. The

risk-free rate is 5% per year, continuously compounded and constant for all maturities.

An ATM European call option written on the stock with maturity 12 months trades for $16.

We can check that 𝜎 = 34.66% prices the call correctly:

𝑑1 =
ln(100/100) + (0.05 + 0.5(0.3466)2)(1)

0.3466√1
= 0.3176,

𝑑2 = 0.3358 − 0.3466√1 = −0.0290.

Therefore,Φ(𝑑1) = 0.6246 andΦ(𝑑2) = 0.4884, which implies that:

𝐶 = 100(0.6246) − 100𝑒−0.05(1)(0.4884) = $16.00.

Therefore, a volatility of 34.66% per year gives a call price of $16.

How can we compute the implied volatility? Unfortunately, it is not possible to solve

analytically for the implied volatility. For a call option, for example, it involves solving

numerically for 𝜎:

𝐶0 = 𝐶(𝜎imp)

Alternatively, we could tabulate the price of a call option for different values of 𝜎 (using

the same parameters as the previous example):

𝜎 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

C 5.28 6.80 8.59 10.45 12.34 14.23 16.13 18.02

We could see that 𝜎 = 35% gives a price of $16.13 for the call, which is quite close to the

true implied volatility of 34.66%.

Appendix

In this section we present a useful result that will allow us to prove the formula for the Δ

and Γ for European call and put options.
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Figure 6: The figure shows the Black-Scholes call premium 𝐶(𝜎) as a function of 𝜎where

𝑆 = 100, 𝑟 = 0.05, 𝑇 = 1 and 𝐾 = 100.We can see that for 𝐶 = $16 the

corresponding volatility is approximately 35%.
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Indeed, we have that:

(𝑑2)
2 = (𝑑1 − 𝜎√𝑇)2

= (𝑑1)
2 − 2𝑑1𝜎√𝑇 + 𝜎2𝑇

= (𝑑1)
2 − 2(ln(𝑆/𝐾) + (𝑟 +

1

2
𝜎2)𝑇) + 𝜎2𝑇

= (𝑑1)
2 − 2(ln(𝑆/𝐾) + 𝑟𝑇)

Hence,

Φ
′
(𝑑2) =

1

√2𝜋
𝑒
−
1

2
(𝑑2)

2

=
1

√2𝜋
𝑒
−
1

2
�(𝑑1)

2−2(ln(𝑆/𝐾)+𝑟𝑇)�

=
𝑆

𝐾
𝑒𝑟𝑇Φ

′
(𝑑1)

which implies,

𝑆Φ
′
(𝑑1) = 𝐾𝑒−𝑟𝑇Φ

′
(𝑑2). (13)

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin451.

Problem 1. What is the price of a European put option on a non-dividend-paying stock

when the stock price is $69, the strike price is $70, the risk-free interest rate is 5% per

annum, the volatility is 35% per annum, and the time tomaturity is six months?

Problem 2. A call option on a non-dividend-paying stock has a market price of $2.61.

The stock price is $15, the exercise price is $13, the time to maturity is three months, and

the risk-free interest rate is 5% per annum. What is the implied volatility?

Problem 3. Consider an option on a non-dividend-paying stock when the stock price is

$30, the exercise price is $29, the risk-free interest rate is 5%, the volatility is 25% per

annum, and the time tomaturity is four months.

a. What is the price of the option if it is a European call?

b. What is the price of the option if it is an American call?

c. What is the price of the option if it is a European put?

d. Verify that put-call parity holds.
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Problem 4. Consider a European call option expiring in 6months and with strike price

equal to $38 on a non-dividend paying stock that currently trades for $40. Interestingly,

the volatility of the stock is zero. If the risk-free rate is 6% per year with continuous

compounding, what is the price of the option?

Problem 5. Consider a European call option expiring in 6months and with strike price

equal to $42 on a non-dividend paying stock that currently trades for $40. Interestingly,

the volatility of the stock is zero. If the risk-free rate is 6% per year with continuous

compounding, what is the price of the option?

Problem 6. Consider a European put option expiring in 9months and strike price $102

written on a non-dividend paying stock. The risk-free rate is 8% per year with continuous

compounding and the stock price is $100. What is the minimum price for the put that

would allow you to compute its implied volatility?

Problem7. Suppose that the sales teamof a trading desk just sold a European call option

contract, that is 100 European call options, to an important client. The contract is written

on a non-dividend paying stock that trades for $210, expires in two years and has a strike

price of $215. The risk-free rate is 6% per year with continuous compounding. A trader of

the desk estimate that the volatility of the stock returns is 45% and expected to remain

constant for the life of the contract.

a. How many shares of the stock does the trader need to buy/sell initially in order to

hedge the exposure created by the sale of the contract?

b. How many risk-free bonds with face value $215 and expiring in two years does the

trader need to buy/sell in order to make sure that the strategy is self-financing?

Problem 8. According to the Black-Scholes model, what is the price of a European put

option on a non-dividend-paying stock when the stock price is $109, the strike price is

$106, the risk-free interest rate is 8% per year, the volatility is 29% per year, and the time

tomaturity is 14months?

Problem 9. According to the Black-Scholes model, what is the price of a European call

option on a non-dividend-paying stock when the stock price is $85, the strike price is

$107, the risk-free interest rate is 7% per year, the volatility is 46% per year, and the time

tomaturity is 6 months?

Problem 10. According to the Black-Scholes model, what is the delta of a European put

option on a non-dividend-paying stock when the stock price is $92, the strike price is

$109, the risk-free interest rate is 6% per year, the volatility is 65% per year, and the time

tomaturity is 8 months?
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