Prof. Lorenzo Naranjo Spring 2026

Volatility Surface Modeling with Neural Networks

Introduction

In this notebook, | implement a neural network to model the implied volatility surface of SPX
options. | load real-world options data, preprocess it, train a neural network to predict implied
volatility based on key features, and evaluate its performance. Finally, | visualize the prediction
errors with respect to moneyness and plot the volatility surface for a specific day.

The Black-Scholes modelis one of the cornerstones of modern financial theory, providing a closed-
form solution for pricing European-style options. However, in practice, market conditions can
deviate from the assumptions of the Black-Scholes model, leading to discrepancies between
theoretical and observed prices. Neural networks offer a flexible approach to model complex
relationships in data, making them suitable for approximating option prices under various market

conditions.

Data Loading and Preprocessing

| start by importing the core libraries used throughout the notebook. NumPy and pandas handle
data transformations, matplotlib is used for plotting, PyTorch defines and trains the neural network,
and scikit-learn provides preprocessing and evaluation tools. | also use yfinance to retrieve daily
VIX levels, which act as a market-wide volatility feature.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import torch

import torch.nn as nn

from torch.utils.data import Dataloader, TensorDataset
from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_absolute_error, r2_score

import yfinance as yf

Before working with the data, | set seeds for reproducibility and select the compute device. This
helps keep results stable across runs and automatically uses a GPU when available.

seed = 420
np.random. seed (seed)
torch.manual_seed(seed)

device = torch.device('"cuda" if torch.cuda.is_available() else "cpu")

Next, | load the SPX option dataset and align it with VIX index values by date. The merge adds a
market volatility state variable to each option observation. You can download the options file from
here and place it in the same directory as this notebook.

df = pd.read_csv("./108105_2023_C_options_data.csv")

df ["date"] = pd.to_datetime(df["date"])

vix = yf.download("“VIX", start="2023-01-01", progress=False, multi_level_index=False) [["Clo
vix.columns = ["“VIX"]

df = df .merge(vix, left_on="date", right_index=True, how="left")

This step applies data filters to remove extreme or noisy observations and then creates moneyness
= K/S, which is one of the most informative features for IV surfaces. The filtering bounds focus

the model on a realistic region of the surface used in class.

cleaned_df
cleaned_df

df[["S", "K", "T", "Price", "~VIX", "Impl Vol"1].copy()
cleaned_df [(cleaned_df ["Impl_Vol"] < 0.6) &

(cleaned df["T"] > 29) &

(cleaned_df["T"] < 681)]
cleaned_df ["moneyness"] = cleaned_df["K"] / cleaned_df["S"]
cleaned_df = cleaned_df [cleaned_df ["moneyness"] > 0.1]

108105_2023_C_options_data.csv

Model Training

Here | define the feature matrix X and target y, split into train/test sets, and standardize features
using only the training sample. | convert arrays to PyTorch tensors and build a dataloader for
mini-batch optimization. The train_size=0.01 choice is intentionally small for fast notebook

execution; increasing it typically improves fit quality.

>
]

cleaned_df [["moneyness", "T", "S", "“VIX"]].values

cleaned_df["Impl_Vol"].values

<
]

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.01, random_state=seed
scaler = StandardScaler()

X_train = torch.from_numpy(scaler.fit_transform(X_train)).float().to(device)

X_test = torch.from_numpy(scaler.transform(X_test)).float().to(device)

y_train = torch.from_numpy(y_train).float().to(device)

y_test = torch.from_numpy(y_test).float().to(device)

train_loader = Dataloader(TensorDataset(X_train, y_train), batch_size=64, shuffle=True)

| then define a feedforward network with two hidden RelLU layers. The model outputs one value
per option: predicted implied volatility. | train it with Adam and use mean squared error as the

objective.

model = nn.Sequential(
nn.Linear(4, 256), nn.ReLU(),
nn.Linear (256, 128), nn.ReLU(Q),
nn.Linear (128, 1)

) .to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-4)

loss_fn = nn.MSELoss()

This loop performs gradient-based training for 40 epochs. At each batch, the code computes
predictions, evaluates loss, backpropagates gradients, and updates weights. Printing every 5

epochs gives a quick diagnostic on whether optimization is progressing.

print("Training...")

for epoch in range(40):

model.train()

epoch_loss

0.0

for xb, yb in train_loader:

optimizer.zero_grad()

loss =

lo

ss_fn(model (xb) .squeeze(), yb)

loss.backward ()

optimizer.step()

epoch_loss += loss.item()

if epoch % 5 == 0:
print (f"Epoch {epoch:02d} | Loss {epoch_loss / len(train_loader):.8f}")

Training. ..

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

00
05
10
15
20
25
30
35

Loss
Loss
Loss
Loss
Loss
Loss
Loss

Loss

O O O O O O o o

Model Evaluation

.00217907
.00007633
.00006824
.00005860
.00005644
.00005957
.00006065
.00006338

After training, | evaluate out-of-sample accuracy on the test set. | report MAE, RMSE, and R-

squared to summarize typical pricing error magnitude and overall explanatory power.

model .eval ()
with torch.no_grad():

y_pred = model(X_test).squeeze().cpu() .numpy()

y_true = y_test.cpu() .numpy()

mae = mean_absolute_error(y_true, y_pred)

rmse = np.sqrt(np.mean((y_pred - y_true)**2))

r2 = r2_score(y_true, y_pred)

print(f"\nTest - MAE: {mae:.6f} | RMSE: {rmse:.6f} | R?: {r2:.6f}")

Test - MAE: 0.004617 | RMSE: 0.006896 | R2: 0.969675

The next two figures give a visual diagnostic of model quality. The first plot shows how absolute
prediction error varies with moneyness; the second compares predicted versus observed implied
volatility and overlays a 45-degree reference line.

moneyness_test = scaler.inverse_transform(X_test.cpu() .numpy()) [:, O]

abs_err = np.abs(y_pred - y_true)

fig, ax = plt.subplots(figsize=(8, 5))
ax.scatter(moneyness_test, abs_err, alpha=0.5, s=1, rasterized=True)
ax.set(
xlabel="Moneyness (Strike / Spot)",
ylabel="Absolute IV Error",
title=f"Absolute Implied Volatility Error vs Moneyness (MAE={mae:.4f})",
)
ax.grid(True, alpha=0.3)
plt.tight_layout ()
plt.show()

Absolute Implied Volatility Error vs Moneyness (MAE=0.0046)

0.25 A

0.20 A

0.15 A

Absolute IV Error

0.10 A

0.05 A

0.00 1 R e

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Moneyness (Strike / Spot)

fig, ax = plt.subplots(figsize=(8, 5))
ax.scatter(y_true, y_pred, alpha=0.5, s=1, rasterized=True)
ax.plot([y_true.min(), y_true.max()], [y_true.min(), y_true.max()], "r--", lw=2)
ax.set(

xlabel="0bserved Implied Volatility",

ylabel="Predicted Implied Volatility",

title=f"Predicted vs Observed Implied Volatility (R2={r2:.4f})",
)
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

Predicted vs Observed Implied Volatility (R2=0.9697)

0.6 1

0.5 4

0.4 4

0.3 1

Predicted Implied Volatility

0.2

0.1 1

0.1 0.2 0.3 0.4 0.5 0.6
Observed Implied Volatility

Visualizing the Volatility Surface

To inspect cross-sectional fit more directly, | compare observed and predicted IV surfaces for one
day.

from scipy.interpolate import griddata

| first reconstruct a clean analysis dataset using the same filters as the model section and create
moneyness.

tmp = (
df[["date", "S", "K", "T", "~VIX", "Impl_Vol"l]
.dropna()
.assign(date=lambda x: pd.to_datetime(x["date"]), moneyness=lambda x: x["K"] / x["S"]1)
.query("Impl Vol < 0.6 and T > 29 and T < 681 and moneyness > 0.1")

I then select the trading date closest to June 16, 2023, which keeps the notebook robust when the

exact timestamp is missing.

target = pd.Timestamp("2023-06-16")

dates = pd.to_datetime(tmp["date"].unique())

day = dates[np.argmin(np.abs((dates - target).to_numpy()))]
d = tmp[tmp["date"] == day].copy()

if d.empty:

raise ValueError(f"No data available near {target.date()} after filters")

Next, | generate model predictions for that day’s option contracts. Inputs are scaled with the same

scaler fitted on training data.

X_day = d[["moneyness", "T", "S", "“VIX"]].to_numpy(dtype=np.float32)
with torch.no_grad():

iv_pred = model(torch.from_numpy(scaler.transform(X_day)) .to(device)) .squeeze(-1).cpu() .:

m
T
iv_obs = d["Impl_Vol"].to_numpy()

d["moneyness"] .to_numpy ()

d["T"].to_numpy ()

| then interpolate scattered observations onto a regular (moneyness, maturity) grid to make
side-by-side surface plots easier to compare.

mg = np.linspace(np.quantile(m, 0.02), np.quantile(m, 0.98), 60)
Tg

MM, TT = np.meshgrid(mg, Tg)

np.linspace(np.quantile(T, 0.02), np.quantile(T, 0.98), 60)

Zobs = griddata(np.c_[m, T], iv_obs, (MM, TT), method="linear")
Zpred = griddata(np.c_[m, T], iv_pred, (MM, TT), method="linear")

Finally, | render two 3D surfaces with a common colormap: observed IV and predicted IV for the
same day. Visual agreement in level and shape indicates the network captures the main surface

structure.

fig = plt.figure(figsize=(8, 12))
for i, (Z, title) in enumerate([(Zobs, "Observed Implied Volatility as of"), (Zpred, "Predic
ax = fig.add_subplot(2, 1, i, projection="3d", rasterized=True)
surf = ax.plot_surface(MM, TT, Z, cmap="inferno", linewidth=0, antialiased=True)
ax.set (
title=f"{title} {day.date(}",
xlabel="K/S",
ylabel="T (days)",
zlabel="1V",
)

fig.colorbar(surf, ax=ax, shrink=0.6, pad=0.1)

plt.tight_layout ()
plt.show()

Observed Implied Volatility as of 2023-06-16

0.22

0.20

0.16

0.12

Predicted Implied Volatility as of 2023-06-16

0.22

0.20

0.18

10

	Introduction
	Data Loading and Preprocessing
	Model Training
	Model Evaluation
	Visualizing the Volatility Surface

