
Prof. Lorenzo Naranjo Spring 2026

Option Pricing with Neural Networks

Introduction

In this notebook, I implement a neural network to approximate the Black–Scholes option pricing

formula. I generate synthetic data based on the Black–Scholes model, train a neural network on

this data, and evaluate its performance. Finally, I visualize the prediction errors with respect to

moneyness.

The Black-Scholes Model

The Black–Scholes model provides a theoretical framework for pricing European-style options.

Remember that a European call option gives the holder the right, but not the obligation, to buy an

underlying asset at a specified strike price𝐾 on a specified expiration date 𝑇. In the following, 𝑆

denotes the current stock price, 𝑟 the risk-free interest rate, 𝜎 the volatility of the underlying asset,

and𝑁(⋅) the cumulative distribution function of the standard normal distribution.

The formula for the price of a European call option is given by:

𝐶 = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2),

where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 +

1

2
𝜎2)𝑇

𝜎√𝑇
,

𝑑2 = 𝑑1 − 𝜎√𝑇.

The Black-Scholes formula is consistent with the absence of arbitrage opportunities in efficient

marketsandassumes that theunderlyingasset followsageometricBrownianmotionwithconstant

volatility and interest rates. Even though these assumptionsmay not hold perfectly in realmarkets,

we will see if we can teach a neural network to approximate this formula.

1

Neural Networks

A neural network is a flexible function approximator built by composing linear maps and nonlinear

activations. It is well suited to learning nonlinear relationships such as themapping from option

inputs to option prices.

For each option observation 𝑖, define the feature vector

x𝑖 =
⎛
⎜

⎝

𝑆𝑖

𝑟𝑖

𝑇𝑖

𝜎𝑖

⎞
⎟

⎠

, 𝑦𝑖 = 𝐶𝑖,

where 𝑦𝑖 is the Black-Scholes call price. A feedforward network predicts

𝑦̂𝑖 = 𝑓(x𝑖; 𝜃),

with parameters 𝜃 (all weights and biases). Training chooses 𝜃 to make 𝑦̂𝑖 close to 𝑦𝑖.

For one hidden layer, a standard notation is

𝑦̂𝑖 = 𝑊(2)𝜙�𝑊(1)x𝑖 + 𝑏(1)� + 𝑏(2),

where𝜙(⋅) is the activation function. (We use𝜙 here so it is not confused with volatility 𝜎.) When

its input is a vector 𝑧 ∈ ℝ𝑚,𝜙(𝑧) is understood elementwise:

𝜙(𝑧) = �𝜙(𝑧1) ⋯ 𝜙(𝑧𝑚)�
⊤

∈ ℝ𝑚.

If the input dimension is 𝑑𝑥 = 4 and the hidden layer has size ℎ, then

𝑊(1) ∈ ℝℎ×𝑑𝑥 , 𝑏(1) ∈ ℝℎ, 𝑊(2) ∈ ℝ1×ℎ, 𝑏(2) ∈ ℝ.

A typical activation function used in neural networks is the Rectified Linear Unit (ReLU), defined

as:

ReLU(𝑥) = max(0, 𝑥).

2

A network with two hidden layers can be written as:

𝑦̂𝑖 = 𝑊(3)𝜙�𝑊(2)𝜙�𝑊(1)x𝑖 + 𝑏(1)� + 𝑏(2)� + 𝑏(3).

With hidden sizes ℎ1 and ℎ2, the dimensions are

𝑊(1) ∈ ℝℎ1×𝑑𝑥 , 𝑏(1) ∈ ℝℎ1 , 𝑊(2) ∈ ℝℎ2×ℎ1 , 𝑏(2) ∈ ℝℎ2 , 𝑊(3) ∈ ℝ1×ℎ2 , 𝑏(3) ∈ ℝ.

This recursive structure is the key idea: each layer transforms the previous layer’s output, and

adding layers increases themodel’s capacity to approximate complex functions such as Black-

Scholes prices.

The training process involves adjusting the parameters𝜃 tominimize a loss function, such asMean

Squared Error (MSE), which measures the average squared difference between the predicted and

true option prices:

MSE =
1

𝑁

𝑁

�

𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)
2,

where 𝑁 is the number of training samples. Optimization algorithms like Stochastic Gradient

Descent (SGD) or Adam are commonly used to update the parameters based on the gradients of

the loss function with respect to the parameters.

It is usually good practice to train the neural network on a training dataset and evaluate its per-

formance on a separate testing dataset to ensure that the model generalizes well to unseen

data.

Generating the Training Data

We use PyTorch to build and train the neural network, and scikit-learn for preprocessing and

train/test splitting.

import numpy as np
import matplotlib.pyplot as plt

import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset

3

from scipy.stats import norm, binned_statistic

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

We first set a random seed for reproducibility and choose the compute device.

seed = 420
np.random.seed(seed)
torch.manual_seed(seed)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

Using device: cuda

For this notebook, CPU training is typically sufficient because the dataset andmodel are small. A

GPU becomesmore important for larger datasets and deeper models.

Next, we define a vectorized Black-Scholes call-pricing function.

def bs_call(S, K, r, T, vol, eps=1e-12):
S = np.asarray(S, dtype=float)
K = np.asarray(K, dtype=float)
r = np.asarray(r, dtype=float)
T = np.maximum(np.asarray(T, dtype=float), eps)
vol = np.maximum(np.asarray(vol, dtype=float), eps)

d1 = (np.log(S / K) + (r + 0.5 * vol**2) * T) / (vol * np.sqrt(T))
d2 = d1 - vol * np.sqrt(T)
return S * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)

We now generate synthetic data on a grid of (𝑆, 𝑟, 𝑇, 𝜎) values, keep 𝐾 = 1, and create targets

using Black-Scholes prices with small volatility noise.

4

S = np.arange(0.6, 1.4, 0.005)
r = np.arange(0.00, 0.06, 0.01)
T = np.arange(3/12, 2 + 1/12, 1/12)
vol = np.arange(0.1, 0.9, 0.1)

Sg, rg, Tg, vg = np.meshgrid(S, r, T, vol, indexing="ij")
Sf, rf, Tf, vf = Sg.ravel(), rg.ravel(), Tg.ravel(), vg.ravel()

vol_sd = 0.03 # 3 vol points
vf_noisy = np.clip(vf + np.random.normal(0, vol_sd, size=vf.shape), 1e-4, None)
y = bs_call(Sf, 1.0, rf, Tf, vf_noisy).astype(np.float32)

We then stack the features into a design matrix X.

X = np.column_stack([Sf, rf, Tf, vf]).astype(np.float32)

print(f"Generated {X.shape[0]} observations")

Generated 176640 observations

Building and Training the Neural Network

We split the data into training and test sets, standardize the features, and move tensors to the

selected device.

train_frac = 0.01
X_tr, X_te, y_tr, y_te = train_test_split(X, y, train_size=train_frac, random_state=seed)

scaler = StandardScaler()
X_tr = scaler.fit_transform(X_tr).astype(np.float32)
X_te = scaler.transform(X_te).astype(np.float32)

to_device = lambda a: torch.from_numpy(a).to(device)
X_tr, y_tr = to_device(X_tr), to_device(y_tr)

5

X_te, y_te = to_device(X_te), to_device(y_te)

train_loader = DataLoader(TensorDataset(X_tr, y_tr), batch_size=32, shuffle=True)

Next, we specify a small feedforward network, MSE loss, and the Adam optimizer.

model = nn.Sequential(
nn.Linear(4, 50),
nn.ReLU(),
nn.Linear(50, 1),

).to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-4)
loss_fn = nn.MSELoss()

We train the model for a fixed number of epochs and print progress every five epochs.

epochs = 25
print("Training...")
for epoch in range(epochs):

model.train()
running = 0.0
for xb, yb in train_loader:

optimizer.zero_grad(set_to_none=True)
pred = model(xb).squeeze(-1)
loss = loss_fn(pred, yb)
loss.backward()
optimizer.step()
running += loss.item()

if epoch % 5 == 0:
print(f"Epoch {epoch:02d} | Loss {running / len(train_loader):.4f}")

Training...

6

Epoch 00 | Loss 0.0883
Epoch 05 | Loss 0.0020
Epoch 10 | Loss 0.0010
Epoch 15 | Loss 0.0007
Epoch 20 | Loss 0.0005

Evaluating the Model

After training, we evaluate fit and generalization using MSE on the training and test sets.

model.eval()
with torch.inference_mode():

train_mse = loss_fn(model(X_tr).squeeze(-1), y_tr).item()
test_mse = loss_fn(model(X_te).squeeze(-1), y_te).item()

print(f"Train MSE: {train_mse:.4f}")
print(f"Test MSE: {test_mse:.4f}")
print("Done!")

Train MSE: 0.0004
Test MSE: 0.0004
Done!

To diagnose where the model performs better or worse, we plot absolute prediction error against

moneyness.

model.eval()
with torch.inference_mode():

test_pred = model(X_te).squeeze(-1).cpu().numpy()
y_true = y_te.cpu().numpy()

abs_err = np.abs(test_pred - y_true)

Recover original (unscaled) features: [S, r, T, vol]

7

X_te_orig = scaler.inverse_transform(X_te.detach().cpu().numpy())

Since K=1, moneyness = S/K = S
moneyness = X_te_orig[:, 0]

plt.figure(figsize=(8, 5))
plt.scatter(moneyness, abs_err, alpha=0.5, s=1, rasterized=True)
plt.xlabel("Moneyness (S/K) (K=1 � S)")
plt.ylabel("Absolute Prediction Error |Predicted - Actual|")
plt.title("Neural Network Absolute Prediction Errors vs Moneyness")
plt.grid(True, alpha=0.3)

mae = abs_err.mean()
plt.text(

0.05, 0.95, f"Mean Absolute Error: {mae:.4f}",
transform=plt.gca().transAxes,
bbox=dict(boxstyle="round,pad=0.3", facecolor="white", alpha=0.8),

)

plt.tight_layout()
plt.show()

8

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Moneyness (S/K) (K=1 S)

0.00

0.02

0.04

0.06

0.08

0.10
Ab

so
lu

te
 P

re
di

ct
io

n
Er

ro
r |

Pr
ed

ict
ed

 -
Ac

tu
al

|
Mean Absolute Error: 0.0163

Neural Network Absolute Prediction Errors vs Moneyness

Finally, we summarize the same pattern with binnedmeans and standard deviations of absolute

error.

moneyness_bins = np.linspace(moneyness.min(), moneyness.max(), 20)
bin_centers = 0.5 * (moneyness_bins[:-1] + moneyness_bins[1:])
bin_means, _, _ = binned_statistic(moneyness, abs_err, statistic="mean", bins=moneyness_bins)
bin_stds, _, _ = binned_statistic(moneyness, abs_err, statistic="std", bins=moneyness_bins)

plt.figure(figsize=(8, 5))
plt.errorbar(

bin_centers,
bin_means,
yerr=bin_stds,
fmt="o-",
capsize=5,
capthick=1,

)

9

plt.xlabel("Moneyness (S/K)")
plt.ylabel("Mean Absolute Prediction Error")
plt.title("Binned Absolute Prediction Errors vs Moneyness")
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Moneyness (S/K)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
ea

n
Ab

so
lu

te
 P

re
di

ct
io

n
Er

ro
r

Binned Absolute Prediction Errors vs Moneyness

10

	Introduction
	The Black-Scholes Model
	Neural Networks
	Generating the Training Data
	Building and Training the Neural Network
	Evaluating the Model

