
Prof. Lorenzo Naranjo Spring 2026

Optimization in Python

Minimizing Functions

In this notebook we will learn how to minimize functions using the SciPy library optimize. Inside
optimize there are many functions, one of them called minimize. Note that minimizing 𝑓(𝑥) is

the same thing as maximizing −𝑓(𝑥), so minimization and maximization are conceptually the

same thing. The only difference is that the function minimizeminimizes a function, so if we want

to maximize a function we need to minimize its negative.

Let’s start by importing the libraries we will need. We will use numpy to create arrays and do

somemath, matplotlib to create plots, scipy.optimize to minimize functions, and yfinance
to download financial data. I also add a line to ignore some warnings that we will get when

downloading data from Yahoo Finance. You can ignore this line if you want, but it will make the

output of the notebook cleaner.

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
import yfinance as yf

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

In the following we will minimize the function

𝑓(𝑥) = 𝑥2 − 10𝑥 + 6.

This is a second order polynomial whose second derivative is positive and therefore has a unique

minimum.

In Python we can define this function as follows.

1

def f(x):
return x**2 - 10*x + 6

We can plot the function by sampling 𝑓(𝑥) at different points. Below I create a numpy array size
100 that goes from -2 to 12. I then plot 𝑓(𝑥).

x = np.linspace(-2, 12, 100)
ax = plt.plot(x, f(x))

2 0 2 4 6 8 10 12
20

10

0

10

20

30

We can see that the function indeed has a unique minimum value at 5. Let’s use the routine

minimize to find theminimum. The two required inputs for this routine are the function we want

to minimize and an initial guess for the variables of the function.

This is a very simple function so regardless where we start wewill obtain theminimum very quickly.

For example, we could start from -100.

minimize(f, [-100])

message: Optimization terminated successfully.
success: True

2

status: 0
fun: -19.0
x: [5.000e+00]

nit: 4
jac: [0.000e+00]

hess_inv: [[5.000e-01]]
nfev: 14
njev: 7

Or we could start from 100.

minimize(f, [100])

message: Optimization terminated successfully.
success: True
status: 0

fun: -18.999999999999993
x: [5.000e+00]

nit: 4
jac: [0.000e+00]

hess_inv: [[5.000e-01]]
nfev: 14
njev: 7

In both caseswe obtain the same answer. The result of theminimization is an object that we could

store in a variable res.

res = minimize(f, [100])

The variable res contains the results of the optimization. We can then retrieve the solution of the

optimization stored in res.x, the optimal value function given by res.fun, or to know whether

the optimization was successful stored in res.success.

For example, the optimal value of the function is

3

res.x

array([5.00000007])

As an application ofminimization, let’s compute the zeros of the previous function. An easy way to

do that is to minimize the square of 𝑓(𝑥). If the function has at least one zero, then the minimum

value of the function will be zero as well. In our case we know there are two zeros. Depending on

the starting value, we will find one or the other.

To start, let’s define

𝑔(𝑥) = 𝑓(𝑥)2,

and create a plot.

In Python we can define the function 𝑔(𝑥) as follows.

def g(x):
return f(x)**2

ax = plt.plot(x, g(x))

2 0 2 4 6 8 10 12
0

200

400

600

800

4

We can see that the function has twominima at which the function value is indeed zero. To find

the left minimumwe can start looking at -2.

minimize(g, [-2])

message: Optimization terminated successfully.
success: True
status: 0

fun: 4.0443683223940154e-13
x: [6.411e-01]

nit: 7
jac: [-9.956e-06]

hess_inv: [[6.571e-03]]
nfev: 16
njev: 8

With this starting point, the minimum is at 𝑥 = 0.64. To find the other minimum, let’s start at 12.

minimize(g, [12])

message: Optimization terminated successfully.
success: True
status: 0

fun: 2.5606609315712264e-13
x: [9.359e+00]

nit: 7
jac: [9.955e-06]

hess_inv: [[6.571e-03]]
nfev: 16
njev: 8

The other minimum is at 𝑥 = 9.36. Therefore, the two zeros of our original function are 0.64 and

9.36, whichmakes sense since they are symmetrical from theminimum of 𝑓(𝑥)which is 5.

5

Running A Regression

A regression is a simple application of minimizing the sum of squared errors. Say a variable 𝑦

depends linearly on another variable 𝑥 and a random error 𝑒 independent of 𝑥. Themodel for 𝑦

is

𝑦 = 𝛼 + 𝛽𝑥 + 𝑒.

If we have𝑁 observations of 𝑦 and 𝑥, we can estimate 𝛼 and 𝛽 byminimizing

mse =

𝑁

�

𝑖=1

(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)
2.

To implement this with real data, we could try to estimate a classical factor model regression

𝑟𝐴 = 𝛼 + 𝛽𝑟𝑀 + 𝑒,

where𝑀 is a market index like the S&P 500 and 𝐴 is a stock. In the regression, 𝑟𝐴 and 𝑟𝑀 represent

the monthly returns of the stock and the index. I’ll use the ETF on the S&P 500 (SPY) as a proxy for

𝑀.

We first download and compute stock return data from Yahoo Finance for MSFT (stock) and SPY

(proxy for S&P 500) starting from January 2000. We then compute monthly returns by resampling

the data to monthly frequency and computing percentage changes. Finally, we drop the first

observation as it will be NaN due to the percentage change.

df = (yf
.download(['MSFT', 'SPY'], progress=False, start='2000-01-01')
.loc[:,'Close']
.resample('ME')
.last()
.pct_change()
.dropna())

We can now define our objective function as the sum of squared errors.

6

def mse(x, dep, ind):
return sum((dep - x[0] - x[1]*ind)**2)

Finally, the estimated 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 come fromminimizing this function.

minimize(mse, [0, 0], args=(df.MSFT, df.SPY))

message: Optimization terminated successfully.
success: True
status: 0

fun: 1.2319041982507923
x: [3.117e-03 1.112e+00]

nit: 3
jac: [0.000e+00 1.490e-08]

hess_inv: [[1.646e-03 -6.408e-03]
[-6.408e-03 8.458e-01]]

nfev: 18
njev: 6

In class I asked you to also estimate an extended version of the model. The first version we could

try to estimate is:

𝑟𝐴 = 𝛼 + 𝛽1𝑟𝑀 + 𝛽2𝑟
2
𝑀 + 𝛽3𝑟

3
𝑀 + 𝛽4𝑟

4
𝑀 + 𝛽5𝑟

5
𝑀 + 𝑒.

In other words, does the error get smaller if we add powers of the independent variable?

To answer this question, let’s define a new error function that includes the powers of the indepen-

dent variable.

def mse1(x, dep, ind):
return sum((dep - x[0] - x[1]*ind - x[2]*ind**2 - x[3]*ind**3 - x[4]*ind**4 - x[5]*ind**5)**2)

We can nowminimize this function. Note that the initial guess has six values as we are finding six

parameters.

7

minimize(mse1, [0, 0, 0, 0, 0, 0], args=(df.MSFT, df.SPY))

message: Optimization terminated successfully.
success: True
status: 0

fun: 1.2171400347937524
x: [-7.391e-04 1.310e+00 2.165e+00 -3.149e+01 -1.349e+02

3.098e+01]
nit: 54
jac: [-2.682e-07 1.416e-06 -7.242e-06 -5.960e-08 -1.609e-06

-5.201e-06]
hess_inv: [[2.884e-03 -2.066e-02 ... 3.981e+01 -9.199e+00]

[-2.066e-02 2.289e+00 ... -9.160e+02 2.101e+02]
...
[3.981e+01 -9.160e+02 ... 2.866e+06 -6.621e+05]
[-9.199e+00 2.101e+02 ... -6.621e+05 1.530e+05]]

nfev: 413
njev: 59

Clearly, the error did not go much down. It seems this newmodel is not that much better. We

could try something else. Why not add another index and second order powers? Say we want to

estimate

𝑟𝐴 = 𝛼 + 𝛽1𝑟𝑀 + 𝛽2𝑟𝑄 + 𝛽3𝑟𝑀𝑟𝑄 + 𝛽4𝑟
2
𝑀 + 𝛽5𝑟

2
𝑄 + 𝑒,

where𝑄 represents the ETF on Nasdaq (QQQ). We first add Nasdaq (QQQ) to our dataframe.

df = (yf
.download(['MSFT', 'SPY', 'QQQ'], progress=False, start='2000-01-01')
.loc[:,'Close']
.resample('ME')
.last()
.pct_change()
.dropna())

We thenmodify the objective function accordingly.

8

def mse2(x, dep, ind1, ind2):
return sum((dep - x[0] - x[1]*ind1 - x[2]*ind2 - x[3]*ind1*ind2 - x[4]*ind1**2 - x[5]*ind2**2)**2)

Finally weminimize the function to estimate the parameters.

minimize(mse2, [0, 0, 0, 0, 0, 0], args=(df.MSFT, df.SPY, df.QQQ))

message: Optimization terminated successfully.
success: True
status: 0

fun: 1.0457215324052629
x: [1.751e-03 1.671e-01 7.294e-01 8.236e+00 -6.457e+00

-1.352e+00]
nit: 36
jac: [-2.980e-08 2.757e-06 -1.580e-06 -2.235e-07 -5.811e-07

-1.520e-06]
hess_inv: [[2.416e-03 -1.252e-02 ... -4.170e-01 -1.101e-01]

[-1.252e-02 3.022e+00 ... 1.903e+01 4.661e+00]
...
[-4.170e-01 1.903e+01 ... 1.221e+03 2.538e+02]
[-1.101e-01 4.661e+00 ... 2.538e+02 1.319e+02]]

nfev: 273
njev: 39

We can see that this model reduces the MSE significantly. Whether or not that is important

depends on how the estimatedmodel behaves out of sample.

Some Final Notes

The minimize function has many options that we have not explored. For example, we can set

the optimization method, tolerance, and maximum number of iterations. We can also add

constraints such as bounds on variables or linear restrictions. I encourage you to explore the

scipy.optimize.minimize documentation for more examples.

9

Also, this is not themost efficient way to run a regression. In practice, wewould use statsmodels,
which is faster and provides richer inference output. The purpose here is to show optimization as

a general finance tool: minimizing the sum of squared errors is flexible, stable in many settings,

and easy to extend with regularization terms.

10

	Minimizing Functions
	Running A Regression
	Some Final Notes

