Prof. Lorenzo Naranjo Spring 2026

A Market Index for Cryptocurrencies

Introduction
In this notebook, we build a market index for cryptocurrencies. We then use this index to analyze

the relationship between individual cryptocurrency returns and market-index returns. Finally, we
analyze the relationship between crypto market returns and stock market returns.

Building a Crypto Market Index

The code below downloads data for the following cryptocurrencies:

Ticker Name

BTC Bitcoin

ETH Ethereum
BCH Bitcoin Cash
LTC Litecoin
XRP Ripple
DOGE Dogecoin
XLM Stellar

We include these seven coins because they have sufficiently long time series. The code also
computes monthly returns and stores them in a DataFrame called df. This DataFrame has one
column per coin and one row per month.

As always, we start by loading the required libraries. In this notebook, we use statsmodels to run
linear regressions.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import yfinance as yf

import seaborn as sns

import statsmodels.formula.api as smf

import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)

We now download cryptocurrency prices and compute returns. The code below downloads daily
data, resamples to month-end observations, computes percentage returns, and drops missing
values.

coins = ['BTC-USD','ETH-USD','LTC-USD', 'XRP-USD', 'DOGE-USD', 'BCH-USD','XLM-USD']

df = (
yf.download(coins, start='2015-01-01', progress=False)['Close']
.resample('ME")
.last ()
.pct_change ()
.dropna()

df.columns = [c.replace('-USD','') for c in df.columns]

We will use the following weights to construct our crypto market index. For simplicity, the weights
are constant over time. In practice, we could update them monthly based on market capitalization
or use another weighting scheme. These weights are based on each coin’s market capitalization
as of June 2024. Bitcoin (BTC) receives the largest weight, consistent with its much larger market
capitalization.

w_raw = pd.Series({
'BTC': 57.5,
'ETH': 11.6,

'XRP': 3.8,

'DOGE': 0.7,
'BCH': 0.4,
'LTC': 0.2,
'XLM': 0.2

)

Next, we build the crypto market index. We first normalize the weights so they sum to one, then
expand them into a Pandas DataFrame with the same shape and index as the returns DataFrame.

The variable mkt_ret is the weighted sum of cryptocurrency returns.

w = (w_raw / w_raw.sum())

weights = pd.DataFrame(np.tile(w.values, (len(df.index), 1)), index=df.index, columns=w.inde:
mkt_ret = (weights * df).sum(axis=1)

df ['MKT'] = mkt_ret

We can now plot the crypto market index. As the figure shows, it is highly volatile.

ax = df ['MKT'] .plot(title='Crypto Market Index')

Crypto Market Index

0.8 A

0.6

0.4 -

0.2 -

0.0 -

—0.2

—0.4 A
2018 2019 2020 2021 2022 2023 2024 2025 2026
Date

To better benchmark this volatility, we also download SPY returns and plot them with the crypto
market index. This provides a direct comparison of crypto and stock market volatility. The code
below downloads SPY data, resamples to month-end observations, computes returns, and drops
missing values.

af['SPY'] = (yf
.download('SPY', start='2015-01-01"', progress=False)
.loc[:,'Close']
.resample('ME')
.last ()
.pct_change ()
.dropna())
ax = df.loc[:,['MKT', 'SPY']].plot(title='Crypto Market Index and SPY')

Crypto Market Index and SPY

— MKT
— SPY

0.8 A

0.6 1

0.4

0.2

0.0 A

—0.2 -

—0.4 A
2018 2019 2020 2021 2022 2023 2024 2025 2026
Date

The previous figure shows that cryptocurrencies are much more volatile than stocks. The volatility
of the crypto market index appears roughly three to four times higher than SPY’s volatility.

Analyzing the Relationship Between Cryptocurrencies and the Crypto Market Index

Returning to the main objective, we now examine how well the crypto market index explains individ-
ual coin returns. We should expect BTC to track the index closely. The scatter plot below compares
BTC returns with market-index returns and shows a strong relationship, which is expected given
BTC’s large index weight.

ax = sns.lmplot(data=df, x='MKT', y='BTC')

BTC

'.

—0.4

-04 -0.2 0.0 0.2 0.4 0.6 0.8
MKT

To formalize this relationship, we run the following regression with statsmodels:

TsTc = & + ﬁrMKT + e.

The code below runs the regression and prints the summary output, including coefficient esti-
mates, standard errors, t-statistics, p-values, confidence intervals, and R-squared.

res = smf.ols('BTC ~ MKT', data=df).fit()

print(res.summary(slim=True))

OLS Regression Results

Dep. Variable: BTC R-squared: 0.902
Model: OLS Adj. R-squared: 0.901
No. Observations: 99 F-statistic: 893.5
Covariance Type: nonrobust Prob (F-statistic): 9.73e-
51

coef std err t P>t [0.025 0.975]
Intercept -0.0023 0.006 -0.351 0.726 -0.015 0.011
MKT 0.8611 0.029 29.892 0.000 0.804 0.918
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The regression reports several useful statistics. R-squared measures the share of return variance
explained by the market index. Here, R-squared is high, as expected, because BTC is a large part
of the index. The coefficient on MKT is the beta estimate and is slightly below one. Its p-value
is very small, so we reject the null hypothesis that beta is zero. In other words, BTC returns are
strongly and statistically significantly related to market-index returns.

Now let’s analyze a coin with a smaller index weight: BCH. The scatter plot below shows BCH
versus MKT, with noticeably more dispersion than BTC.

ax = sns.lmplot(data=df, x='MKT', y='BCH')

1.5 A

1.0 A

BCH

0.5 A

0.0 -

—0.5 ~

-04 -0.2 0.0 0.2 0.4 0.6 0.8
MKT

The BCH regression shows a beta slightly above one, but a lower R-squared.

res = smf.ols('BCH ~ MKT', data=df).fit()

print(res.summary(slim=True))

OLS Regression Results

Dep. Variable: BCH R-squared:

Model: OLS Adj. R-squared:

No. Observations: 99 F-statistic:
Covariance Type: nonrobust Prob (F-statistic):
15

0.478

0.472

88.69
2.43e-

coef std err t P>t [0.025 0.975]

Intercept -0.0142 0.026 -0.540 0.591 -0.066 0.038
MKT 1.1061 0.117 9.418 0.000 0.873 1.339
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We can use a for loop to estimate all betas and R-squared values at once. The code below
regresses each coin on the crypto market index and stores the outputs in a DataFrame. Notice
that the MKT row is an intentional sanity check: regressing MKT on itself gives a beta of 1 and an

R-squared of 1.

results = []
for ¢ in df.columns:
if ¢ == 'SPY':
continue
res = smf.ols(f'{c} ~ MKT', data=df).fit()
results.append ({
'Coin': c,
'Beta': res.params['MKT'],
'R-squared': res.rsquared

D

results_df = pd.DataFrame(results)

results_df['Beta'] = results_df['Beta'].round(2)
results_df ['R-squared'] = results_df['R-squared'].round(3)
display(results_df)

Coin Beta R-squared

0 BCH 1.11 0.478
1 BTC 0.86 0.902

Coin Beta R-squared

DOGE 2.13 0.229
ETH 1.07 0.720
LTC 1.06 0.690
XLM 2.08 0.433
XRP 2.60 0.369
MKT 1.00 1.000

N OO o0k 0N

Interestingly, Dogecoin (DOGE), Stellar (XLM), and Ripple (XRP) have relatively high betas, meaning
their returns are quite sensitive to the market index on average. However, their R-squared values
are low, indicating that the index explains only a limited share of their return variation. This pattern
suggests substantial coin-specific risk, or variation not captured by the market factor. In crypto
markets, that could reflect factors such as technology, governance, adoption, or specific use

cases.

Crypto Market Index vs. Stock Market

Finally, we can explore how well the stock market explains variation in crypto market returns. The
graph below suggests that a large share of crypto return variance is not explained by the stock

market, which points to potential diversification benefits.

ax = sns.lmplot(data=df, x='SPY', y='MKT')

0.8

0.6

_04 .

-0.10

—0.05

0.00 0.05
SPY

0.10

A regression of crypto market returns on the stock market portfolio suggests a beta around 1.8.

The coefficient p-value is very small, so we reject the null hypothesis that beta is zero.

res = smf.ols('MKT ~ SPY', data=df).fit()

print(res.summary(slim=True))

OLS Regression Results

Dep. Variable:
Model:

No. Observations:
Covariance Type:
05

MKT
OLS
99

nonrobust

10

R-squared:
Adj. R-squared:
F-statistic:

Prob (F-statistic):

0.147

0.138

16.72
8.96e-

coef std err t P>t [0.025 0.975]

Intercept 0.0252 0.021 1.191 0.237 -0.017 0.067
SPY 1.7993 0.440 4.089 0.000 0.926 2.673
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We can also test whether the coefficient differs from 1. The F-test p-value is 0.07, so at the 5%
level we fail to reject the null hypothesis that the coefficient equals 1.

hypothesis = 'SPY = 1'

f_test = res.f_test(hypothesis)

print (f"F-statistic: {f_test.fvalue:.4f}")
print (f"P-value: {f_test.pvalue:.4f}")

print (f"Degrees of freedom (numerator, denominator): {f_test.df_num}, {f_test.df_denom}")

F-statistic: 3.2989
P-value: 0.0724

Degrees of freedom (numerator, denominator): 1.0, 97.0

11

	Introduction
	Building a Crypto Market Index
	Analyzing the Relationship Between Cryptocurrencies and the Crypto Market Index
	Crypto Market Index vs. Stock Market

