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Probability Basics

These notes introduce basic probability concepts crucial to understanding the modern
investment theory approach. Investment theory aims to understand how to allocate
resources to different assets whose future payoffs are uncertain. To model the future
uncertainty of prices and cash flows, we can rely on well-established mathematical
concepts that summarize the expected rewards and risks of investing in a portfolio of
financial assets.

In the following, there is only a finite number of future possibilities to simplify the mathe-
matical exposition. For example, the future price of a stock can go up, stay constant, or go
down. However, all the results presented in this chapter hold if we relax this assumption
and allow for an infinite number of future outcomes.

Sets

Asetis acollection of objects. The objects of a set can be anything you want. For example,
a set may contain numbers, letters, cars, or pictures. In our case, we will be concerned
of sets that contain future possibilities or outcomes that can occur.

One way to define a set is to enumerate its elements. For example, the set of all integers
from1to10is
A={1,2,3,45,6,7,89,10}.

Once we have defined a set, we can answer if an object is an element of the set or not.
For example, the number 3 is an element of A whereas the number 20 is not. We use
the symbol € to denote membership of a set and & to denote the contrary. Therefore, we
have that3 € Aand 20 ¢ A.



Some sets can have an infinite number of elements. For example, the natural numbers
are defined as
N={0,1,23,..}

where the triple dots mean thatifnisin N, thenn 4+ lisalsoinN.

Since all elements of A are also members of N, we say that A is a subset of N and write
itas A c N. Using this terminology, we can redefine the set A defined above in a more
Pythonic way:

A={neN:n<11}.

If we are studying sets of natural numbers, it makes sense to define the universe to be N
and sets under study will be subsets of the universe.

Now, define the set B as

B=1{6,7,8,9,10,11,12,13, 14, 15}.

The intersection between 4 and B is the set denoted A N B whose members are both in
A and B. Using the sets defined above, we have that

ANB=1{6,7,8,9,10}.

The union of the sets 4 and B is the set denoted A U B whose members are eitherin 4, B,
or both. Thus, using our previously defined sets we have that

AUB =1{1,2,3,..,14,15}.

The set difference of A and B is the set denoted A \ B whose members are in A but are
not members of B. Thus,
A\ B ={1,2,3,4,5}

and
B\ A={11,12,13,14,15}.

The complement of A4 is the set denoted by A whose members are not in A. Of course



this statement only makes sense if we define a universe where the elements notin A can

live. If the universe is N, then
A¢ =N \A={11,12,13,..}.

Similarly,
B¢ = {0,1,2,3,4,5} u{21,22,23,..}.

Note that if you take all the elements of 4 out of 4 you end up with an empty set, that
is A\ A = {}. We typically denote the empty set by @, but is good to keep in mind that
@ = {}. In our universe of natural numbers, no natural number is a member of the empty
set. We can write this formallyasn ¢ @, Vn € N. Thus, the empty set is a subset of any
subset of N.

The cardinality of the set A, denoted by |A|, counts the number of elements in A. We
then have that |[A| = |B| = 10 and |C| = 3. The empty set has cardinality 0 whereas the
cardinality of N is denoted X,.

The power set of a set C, denoted by P(C), is the set containing all possible subsets of C.
For example, if C = {1, 2, 3}, then

PO = {3, {1}3,{2}, {3}, {1,2},{2,3}, {1,3}, {1, 2,3}}.

Clearly, the power sets of A and B are much bigger. For a given set A4, the cardinality of its
power set is 2!4|. Therefore, P(A) and P(B) contain each 210 = 1024 different sets.

Finally, the Cartesian product of A and B is the set denoted by A X B whose members

are all the pairwise combinations of the elements of A and B.

AxXB| 6 7 .. 15
1 | @we @7 .. (@15

2 | @26 @7 .. (215)

10 |(10,6) (10,7) .. (10,15)

The cardinality of A X B is equalto the product of the cardinalitiesof Aand B, i.e., |AXB| =



|A| x |B|.

Outcomes and Events

In probability theory, a finite sample space is a non-empty finite set denoted by (1. The
sample space includes all possible outcomes that can occur. A probability measure is a
function that assigns to each element w of L a number in [0, 1] so that

Z P(w) = 1.

An event A is a subset of (), and we define the probability of that event occurring as

P(A) = D P(w). ()

wWEA

Such a finite probability space is denoted by (£, P).

An immediate consequence of (1) is that P({1) = 1. Furthermore, if A and B are disjoint

sets of () we have that

P(AUB) = Z P()

= P(4) + P(B).

If we denote by A¢ the complement of 4 in Q, the last expression implies that P(4) +
P(A%) = 1. Also, because Q¢ = @, we also have that P(Q) + P(@) = 1, or P(®) = 0.

Example 1. If Q = {wq, w,, w3}, then

PQ) = {0, {w1}, {wz}, {ws}, {wy, w2}, {wy, w3}, {wy, w3}, {wy, Wy, w3}}

defines the collection of all possible events that we can measure. As we saw previously,
the cardinality of P () grows exponentially with the size of ().



The function P such that P(w;) = 1/2, P(w,) = 1/4, and P(w3) = 1/4 defines a proba-
bility measure on (). For example, we have that P({wq, w3}) = 1/2 + 1/4 = 3/4. [

Random Variables

Definition

If (Q, P) is a finite probability space, a random variable is a real-valued function defined
on (.

Example 2. Consider a sample space with four possible outcomes Q = {w;, w,, w3, W4}
The table below describes the possible values of three random variables denoted by X, Y
and Z.

Outcome X Y VA

W, 10 20 15
W, 5 10 -10
w3 5 0 15
W, 10 0 -10

Observing the values of X provides perfect information about which event happened. For

example, if X = 5 then we know that w3 occurred.

Knowing the values of Y or Z, on the other hand, does not provide the same amount of
information. If we learn that Y = 0 we only know that either w3 or w, occurred. If we
denote by Fy the set of events that can be generated by Y, we have that

Fr ={0,{w1}, {wz}, {w1, w3}, {wsz, wa}, {w1, w3, w4}, {3, w3, ws}, Q.
The information set provided by Z is even smaller, since

Fr = {0, {w1, w3}, {wy, w4}, Q.



Thus, a random variable does not necessarily provide with all the information generated
by the probability space . [l

Expectation and Variance

If X is a random variable defined on a finite probability space (Q, P), the expectation or
expected value of X is defined to be

EX = Z X(w) P(w),
wWEN
whereas the variance of X is
V(X) = E(X — EX)2
The standard deviation is the square-root of the variance, i.e., oy = /V(X).
Example 3. Consider the sample space (0 = {w, w,, w3} in which we define the proba-

bility measure P such that P(w;) = 1/2, P(w,) = 1/4, and P(w3) = 1/4. There are two
random variables X and Y that take values in (2 according to the table below.

QOutcome Probability X Y

Wy 1/2 10 2
W, 1/4 8 40
w3 1/4 4 20

Using this information, we can compute the expectation of each random variable.

1 1 1
EX=—X10+—><8+ZX4=8,

2 4
EY ! 2+1 4-0+1 20 =16
= — X — X - X = .
2 4 4



Having computed the expectations of X and Y, we can compute their variances as

VX=1>< 10—82+1>< 8—82+1>< 4—-8)2=6
X) 5 ( ) 2 ( ) 4 ( ) )

1 1 1
V(Y) = > X(2_16)2+Z X (40—16)2+Z>< (20 — 16)% = 246.

Finally, the standard deviations of X and Y are gy = V6 ~ 2.45 and oy = V246 ~ 15.68,
respectively. L]

Covariance

The covariance between two random variables X and Y defined on a probability space
(Q, P) is defined as
Cov(X,Y)=E(X —EX)(Y —EY),
and their correlation is
Cov(X,Y)

Pxy =
' Ox 0y

The correlation between any two random variables is always between -1 and 1.
Proof

Let oy and oy denote the standard deviations of X and Y, respectively. We can then
compute

E((X —EX)ay + (Y —EY)ox)? = (60¢ + 2050y Cov(X,Y) + o0%)
= 20x0y(oxoy + Cov(X,Y)),

which implies oyoy + Cov(X,Y) = 0 or —oyoy < Cov(X,Y).
Similarly,

E((X —EX)ay — (Y —EY)ox)? = (620¢% — 2050y Cov(X,Y) + 0#02)
= 20y0y(oxoy — Cov(X,Y)),

which implies oxgy — Cov(X,Y) = 0 or Cov(X,Y) < oxoy.



Thus, we conclude that
Cov(X,Y)
-1<—<1

—_— )

Ox 0y

orequivalently —1 < pyy < 1. [
Example 4. Continuing with Example 3, we have that

1 1 1
Cov(X,Y) = > X (10-8)(2—16) + Z(8 —8)(40 —16) + Z(4 —8)(20 —16) = —18.
Thus, pxy = —0.47. O

The covariance of X and Y can also be expressed as

Cov(X,Y) = E(XY) — E(X) E(Y).
Proof

Cov(X,Y) = E(X — ECX)) (Y — E(Y))
= E[X(Y —E(Y)] — E[ECX)(Y — E(Y))]
= E(XY) — E[XE(Y)] — E(X) E(Y — E(Y))
= E(XY) — E(X) E(Y).

Probability Mass Function

For discrete random variables, the probability mass function (or pmf) is a real-valued
function that specifies the probability that the random variable X is equal to a certain
value x, i.e.,

px(x) =P(w € Q: X(w) = x).



Example 5. Suppose we define a probability m

easure P to the random variables X and Y

defined in Example 2 according to the table below.

Outcome P

w1 0.10
W, 0.30
w3 0.40
W, 0.20

X Y
-10 20
-5 10
5 0
10 O

We have that the probability mass function of X is

(0.10
0.30
0.40

0.20

px(X) = 1

The probability mass function of Y only loads o

0.60

py(¥) =10.30
0.10

if x = —10,
if x = —5,
ifx =5,
if x = 10.

n three different values forY.

ify=0,
if y = 10,
if y = 20.

O

Itis sometimes easier to visualize the probability mass function by plotting the probability

of different values of the random variable.

It is apparent from the pictures that py(x) = 0if x € {—10,—5,5, 10}. Indeed, the set
{w € Q: X(w) = x}isemptyforall x notequalto —10, =5, 5, or 10. Similarly, py(y) = 0

ify ¢ {0,10,20}.

To simplify notation, we will often write {X = x} to denote the set{w € Q : X(w) = x}.

Using this notation, we have that py(x) = P(X

= Xx).
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(a) The function px(x) defines the probability of X(b) The function py(y) defines the probability of ¥
being equalto x = {—10,-5,5,10}. being equaltoy = {0,10,20}.

Figure 1: The figure plots the probability mass function of the random variables X and Y.

If a random variable is defined for m different values of x, we can re-write the expectation

of a random variable as m

ECO) = ) xipx (), )
i=1

which is commonly used in statistics.

For two random variables X and Y defined in (Q, P), the set {X = x,Y = y} denotes all
outcomes in () that satisfy {X = x} and {Y = y}. Therefore, we have that

X=xY=y}={X=x}n{V =y}

The function
PX,Y(X»Y) =PX =xY=y)

is called the joint probability mass function of X and Y.

Example 6. The joint pmf of the random variables defined in Example 5 is given in the
table below.

10



X\Y| 0o 10 20
~10] 0 0 01
—5 0 03 0

5 (04 0 0
10 |02 0 0

The function py y(x, y) has many zeros since in Example 5 there are only four outcomes.
Any other outcome then has probability zero of occurring. [l

Example 7. We can generate any joint pmf for two random variables as long as the sum of
all probabilities is equalto one. The table below reports the joint probabilities of arandom
variable X taking values in [—1,0, 1] and a random variable Y taking values in [0, 1, 2, 3].

X\Y| o 1 2 3

—1 [0.12500 0.09375 0.06250 0.03125
0.06250 0.12500 0.12500 0.06250
1 |0.03125 0.06250 0.09375 0.12500

In this case the underlying probability space has at least 3 X 4 = 12 possible outcomes.
The figure below plots the joint pmf of X and Y. O

To plot the joint pmf of two random variables we need a three-dimensional graph.

We can use the joint pmfto compute the expectation of afunction of two random variables.
Indeed, we have that

ECOLY) = D0 ) FC vy Ceo ). @
x=1j=1

If we write uy = E(X) and u,, = E(Y), equation (3) implies that the covariance of X and Y
can be computed as

Cov(X,¥) = ) > (ti = i) ) — iy Iy Gk ).
x=1j=1

11



Figure 2: The figure plots the joint probability mass function of X and Y in Example 7.

The joint pmf contains all the information of X and Y since we can recover the individual
pmfs of X and Y from it. Indeed, we have that

px(x) = Z Dx,y (X, J’j)
j=1

and
m
py(y) = Z Pxy (X, y)-
i=1

Itis important to note that the joint pmf not only contains the individual information of
two random variables but also captures their mutual dependence.

Independence
We say that two events A and B are independent if P(A N B) = P(A) P(B).

Example 8. Suppose that the weather tomorrow can be either sunny, fair or rainy. In
addition, a certain stock tomorrow can either go up or down in price.

12



We can define

W = {sunny, fair, rainy}

and

S = {up,down}.

The set of outcomes can be described as all possible pairwise combinations of weather
tomorrow and the stock price movement. The sample space ( is then the cartesian
productof Wand S, i.e., Q=W X S.

We can then define the weather events

Sunny = {(sunny, up), (sunny, down)},
Fair = {(fair, up), (fair, down)},
Rainy = {(rainy, up), (rainy, down)}.

The table below describes the probabilities for tomorrow’s weather.

Weather Sunny Fair Rainy

Probability 0.3 0.5 0.2

Similarly, the stock events can be defined as

Up = {(sunny, up), (fair,up), (rainy,up)},

Down = {(sunny, down), (fair, down), (rainy, down)}.

The probabilities of the stock price going up or down are described in the table below.

Stock Up Down

Probability 0.6 0.4

If the weather does not affect the likelihood of the stock going up or down, we should
expect to see on sunny days 60% of the time the stock going up and 40% of those days
the stock going down.

13



That s, if the weather tomorrow and the stock price movement are independent events,
we should expect

P(Stock N Weather) = P(Stock) P(Weather),

where Stock is either Up or Down, and Weather is either Sunny, Fair, or Rainy.

The table below describes the combined probabilities of the stock price movement and
the weather tomorrow that are consistent with the independence of those events.

Stock\Weather Sunny Fair Rain

Up 0.18 0.30 0.12
Down 0.12 0.20 0.08

In the table, the weather does not change the relative proportions of the probabilities for
the stock price. L]

The previous example shows how to generate independent events out of two finite prob-
ability spaces (4,P;) and (Q,,P,). If we define Q@ = Q; X Q, and let P(wq,w;) =
Pi(w1) P2(w,) for each w; € Q4 and w, € Q,, the pair (Q, P) is a well-defined finite
probability space. In this new probability space, the events A = w; X}, and B = ()4 X w,
are independent for any w; € {1 and w, € (,.

Proof

We have that
P(4)

Z P(wy, wz)

WL €L,

= ) Pi(@1)Pa(@2)

[O)) EQZ

= Py1(wq) Z P2 (w2)

(L)Ze.Q.z

= P1(wq).

14



Similarly, P(B) = P5(w,). Since AN B = {(w4, w2)}, we have that P(AN B) = P(A) P(B),
proving that A and B are independent. O

Example 9. The sample space {} is always independent from any event A C () since
P(AN Q) =P(A) = P(A) P(Q)). Intuitively, an outcome always happens independently
of whether A happens or not. [l

Two random variables X and Y are independent if the events {X = x}and {Y = y} are
independent. Thus, if X and Y are independent we have that

PX=x,Y=y)=PX =x)P(Y =y),

or equivalently

pxy (% y) = px()py(¥).

An important consequence of independence is that if X and Y are two independent
random variables, then

E(XY) = E(X) E(Y). (4)

Proof

If the domains of X and Y are {x4, x5, ..., X, } and {y4, ¥, ..., ¥n}, respectively, we can then

write
m

ECN) = ) xipy(e),

i=1

E(Y) = 2 yipy (V))-
j=1

15



Thus,

ECOE(Y) = (Z xl-px(xo) > v
. Z

=1

> xypx w0

n
z X yipxy (X, Vj)

]

Equation (4) implies that if X and Y are independent, their covariance is equal to zero.

Indeed,
Cov(X,Y) = E(XY) — E(X) E(Y)

= E(X) E(Y) — E(X) E(Y)
= 0.

However, the opposite statement is not true.

Example 10. Consider two random variables X and Y defined in the table below.

Outcome P X Y

W, 0.40 -1 0
W, 0.30 1
w3 030 1 -1

—

We have that

E(X)=04x%x(-1)+0.6x1=0.2,
EY)=04x0+03%x14+03x%x(=1)=0,
EXY)=04X(-1)x0+03x1x1+03x1x(—=1)=0.

Therefore, Cov(X,Y) = 0 — 0.2 X 0 = 0, which shows that X and Y are uncorrelated.

16



However, the two random variables are not independent. If we know that X = —1 then
we know that Y = 0. Similarly, learningthatY = 1tellsusthatX = 1. ]

Linear Combinations

In investment theory, we usually study linear combinations of random variables of the
form Z = aX + BY. The expectation of Z is just a linear combination of the expectations
of XandY,

EZ=aEX+[EY. (5)

The variance of Z, though, includes not only the variances of X and Y but also their

covariances,
V(Z) = a?V(X) + B2 V(Y) + 2af Cov(X,Y). (6)

This is an important result which is at the heart of portfolio diversification.
Proof
The expectation of Z is computed as
EZ =E(aX + BY)
= ) (@X(@) + BY (@) P()

wWEN

—a Z X(w) P(w) + B z Y (@) P(w)

wWEN wWEN

=aEX+[EY.

17



The variance of Z is computed as

V(Z) = V(aX + BY)
= E(aX + BY — E(aX + fY))?
=E(a(X —EX)+ B(Y —EY))?
=E(@*(X—EX)?+B?(Y —EY)? + 2aB(X —EX)(Y —EY))
=a’?E(X —EX)2+B%E(Y —EY)? 4+ 2aBE(X —EX)(Y —EY)
= a?V(X) + B2V(Y) + 2af Cov(X,Y).

]

More generally, consider the random variables X4, X5, ..., X;;, and form a new random
variable X such that
X = ale + azXz + ..+ aan,

where ; € Rforalli € {1, 2, ...,n}.

The expectation of X is a linear combination of the expectations of X4, X, ..., X,,. The
variance of X, though, takes into account of all covariances between X; and Xj, fori,j =

1,2, ...,n. Indeed, we have that

n

V(X) = z Z al-aj COV(Xi, X]) (7)

i=1 j=1

The previous expression can be simplified if the random variables X4, X,, ..., X,, are in-
dependent from each other. In such case, we have that Cov(X;, X;) = Oforalli # j.
Recognizing that Cov(X;, X;) = V(X;), equation (7) implies that

V) = ) a? VXD, ®)

i=1

Example 11. Suppose that X4, X, ..., X;; areindependent random variables with the same
variance denoted by o2. Define X to be the sum of these random variables so that

X =X1 +X2 + XTl

18



Equation (8) implies that

V(X) = Z V(X)) = no?.
i=1

19
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