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The Index Model

Introduction

One of the disadvantages of the Markowitz model is that it requires estimates of all
covariances and expected returns. Estimating the covariance between two assets is not
hard, and can be done with precision, but estimating the pairwise covariances of five
hundred different assets is a large number! Indeed, for five hundred stocks we would have
to estimate 500 X 501/2 = 125,250 different covariances. One way to circumvent this
problem is to realize that stock returns exhibit a factor structure driven by the market.

Indeed, for many stocks the market explains a large fraction of their variability. Whatever is
not explained by the market is firm-specific risk. The index model formalizes this intuition
by splitting the variance of each stock into systematic and idiosyncratic variance.

The Model

The single index modelis a linear regression between the excess returns of a stock and the
excess returns of the market portfolio. Let’s denote by 7; the return of stock i over a given
period, and define R; = 1; — rf as the excess return over the risk-free asset. Similarly,
denote by R,, the excess return of the market over the risk-free rate. The index model
postulates

R; = a; + BiRm + €, (1)

where E(e;) = 0 and Cov(R,,,, ;) = 0.

In the single index model, the beta with the market captures the exposure of all securities
to systematic risk, which is the risk shared by all securities. Therefore, the errorterm is
idiosyncratic. The single index model assumes that Cov(e;, ;) = 0 for any two securities
i and j whose returns are not perfectly correlated.



Variance Decomposition

The assumptions of the single index model imply that the variance of R; can be split into

two parts:
of =V(a; + BiRm + €)

= BEV(Ry) + V(e + 2B, Cov(Rpm, ) (2)
= plaoyg + o?(e).

The first component of al-z is the systematic variance, which depends on the beta of
the security but also the variance of the market. The second term of the variance of i
is typically computed as the difference between the variance of i and the systematic
variance.

Example 1. Suppose that you have the following regression for stock A:
Ry = ag+ BaRy + ey,

where a4 = 0.02, 84, = 1.2,0(eq) = 30% and o)y = 25%. The variance of A can be

computed as follows:
02 =1.2%2 x 0.25% + 0.30%2 = 0.09 + 0.09 = 0.18.
In the previous expression, the systematic and idiosyncratic variances are the same. The

standard deviation of Aisthen o, = v0.18 = 42.43%. ]

The Security Characteristic Line (SCL)

The beta of the model can be estimated from the covariance of R; and R,,,, and the variance
of R,,. Indeed, we have that

Cov(R;, R,,) = Cov(BiRm, Ryy) + Cov(e;, Ry)
= .Bi V(Rm)l



where we use the fact that Cov(R,,,, R;;;) = V(R,;,)- Thus, in the index model we must have

that
_ Cov(R;, Ry)

VR
The alpha of the security can then be computed as

(3)

a; = E(Ry) — B E(Rm). (4)

The line
y=a;+pix

is called the security characteristic line (SCL) of security i. If we plot this line using a line
chart, a; is the intercept and f; is the slope coefficient of the line.

R-Squared

Following the statistic literature, the proportion of systematic variance to total variance is
called the R-squared of security i and can be expressed as

2 2 2
2g a?(e;

R-squared = bi ZM =1- (2 l).
i o

(5)

Therefore, the R-squared can also be expressed as one minus the proportion of idiosyn-
cratic variance to total variance. Since the single index model aims to decompose the
total variance of a security into two orthogonal components, the R-squared gives us the
proportions of this decomposition.

Example 2. You regress the excess returns of stock B on the excess returns of the market:
RB = Up + )BBRM + ép.

Your regression package reports that ag = —0.01, Sz = 0.8 and the R-squared is 0.4. If
the volatility of the market is 25% per year, the systematic variance is 0.8% x 0.25% = 0.04.



Since 40% of the variance is systematic, we have that

, 004
Og = W = 010,

whichimpliesthatop = v0.10 = 31.62% peryear. We also know that 60% of the variance
is firm-specific, which means that

o2(ep) = 0.6 X 0.10 = 0.06,

sothato(eg) = V0.06 = 24.49% per year. ]

Equation (5) can also be expressed in terms of the correlation between R; and Ry,. Indeed,

since
_ Cov(R,Ry) _ 0i0mPim _ TiPim )
' V(Ry) o oy
we have that -
o7 p;?
2,52 LM 52
_Pi%%M oy _ 2
R-squared = —— = > = Piu- (7)
o; '

l

Thus, the R-squared of a regression of R; on Ry, is just the square of the correlation
between R; and Ry,. The name R-squared comes from the fact that we typically use the
greek letter rho (p), which corresponds to the latin letter r, for correlation.

An Example with Real Data

As an example, let’s analyze the monthly returns of Microsoft (Ticker: MSFT) from June
2015 untilJune 2025. All data comes from Yahoo Finance. As a proxy for the risk-free rate,
| use the 13-week Treasury Bill CBOE Index (Ticker *IRX). The rate is expressed per year,
so | convert it to a monthly rate by:

— 1/12
Tmonthly = (1 + rannual) /12 — 1.

To proxy for the market, | use the SPDR S&P 500 ETF Trust (Ticker: SPY), which allows
me to include the dividend distribution of the stocks forming the S&P 500. The monthly



returns are computed using the adjusted price series to obtain a holding period return
that includes dividends.

The table below presents some descriptive statistics of both series of excess monthly
returns.

Table 1: The table presents descriptive statistics of Microsoft and S&P 500 monthly returns using
data from June 2015 until June 2025.

Ticker MSFT  SPY

Mean (%)  2.175 1.002
St. Dev. (%) 6.049 4.465

The table shows that during the period, the monthly returns of Microsoft are more volatile
than those of the S&P 500, but so is the average excess returns of the two series.

The figure below presents a scatter plot of the data. Clearly, the points cluster around the
SCL, and we can see that the range of returns of Microsoft is significantly wider than the
S&P 500.

We can use ordinary least squares (OLS) to estimate the slope coefficientand the intercept
of the SCL. Many statistical packages allow to do this. The results below are computed
using the Python library statsmodels.

OLS Regression Results

Dep. Variable: MSFT R-squared: 0.522
Model: OLS  Adj. R-squared: 0.517
No. Observations: 120 F-statistic: 114.5
Covariance Type: HC1 Prob (F-statistic): 4.32e-
19

coef std err z P>|z]| [0.025 0.975]
Intercept 0.0120 0.004 3.195 0.001 0.005 0.019
SPY 0.9784 0.091 10.701 0.000 0.799 1.158
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Figure 1: The figure plots the excess monthly returns of the market portfolio, proxied by SPY vs. the
excess monthly returns of MSFT from June-2015 until June-2025.



Notes:
[1] Standard Errors are heteroscedasticity robust (HC1)

The table presents many numbers but for our purposes we can focus on just a few of them.
First, under the column coef we can see that the estimate for the interceptis 0.0123
whereas the beta estimate for MSFT is 0.9894. Since the beta of Microsoft is close to one,
we can conclude that Microsoft carries almost the same systematic risk as the market.

We can compute the R-squared of the regression using the beta and variance of MSFT,
and the variance of the market:
0.98942 x 4.4052

R- d= = 0.488.
square 62392

The variance of MSFT and the S&P 500 are computed by squaring the standard devia-
tions reported in Table 1. We can see that the computed R-squared corresponds to the
R-squared reported by the regression package, implying that 48.9% of the variance is
explained by the exposure of MSFT to the market. The remaining variance is firm-specific
risk.

Differences in Beta and R-Squared

The figure below shows a scatter plot of market excess monthly returns vs. the monthly
excess returns of two financial and two technology stocks:

e Citigroup (Ticker: C)

¢ BlackRock (Ticker: BLK)
* Nvidia (Ticker: NVDA)

¢ Tesla (Ticker: TSLA)

As before, we proxy the the market portfolio using the SPDR S&P 500 ETF Trust (Ticker:
SPY), which allows us to include the dividend distribution of the stocks forming the S&P
500. The risk-free rate is obtained from the 13-week Treasury Bill CBOE Index (Ticker
*IRX).
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Figure 2: The figure plots the excess monthly returns of the market portfolio labeled as RMRF and
proxied by SPY, vs. the excess monthly returns of Citigroup (C), BlackRock (BLK), Nvidia
(NVDA), and Tesla (TSLA) labeled RETRF, from June-2015 until June-2025.



The picture shows that different stocks have different degrees of firm-specific risk. Black-
Rock excess returns align quite well with market returns, whereas Tesla excess returns are
the most dispersed. In general, you would expect more dispersion in technology stocks
since by definition new technologies might or might not work. The fact that you get a

technology to work is independent of what the market does.
The table below present relevant values of the regression.

Table 2: The table presents the Alpha, Beta and R-Squared estimates obtained by running a linear
regression of excess monthly returns for Citigroup (C), BlackRock (BLK), Nvidia (NVDA),
and Tesla (TSLA) on the market portfolio proxied by SPY using data from June-2015 until
June-2025.

Alpha Beta R-Squared
Estimate P-value

BLK -0.0011 0.804 1.353 0.668
C -0.0068 0.239 1.562 0.550
NVDA  0.0390 0.000 1.772 0.337
TSLA 0.0190 0.182 1.859 0.206

First, we can see that the R-squared is the lowest for Tesla, which is apparent from the
pictures. The market explains a small fraction of the variance for the stock. On the other

hand, almost 67% of BlackRock’s variance is explained by the market.

Also, we see that both Nvidia and Tesla load on significant systematic risk. Certainly, their
cash flows are exposed to how the economy does and this is reflected on their high betas.
Citigroup also has a high beta, which is typical of financial firms that are also exposed to
how the market performs. BlackRock has the lowest beta of the four stocks, although is

still higher than the beta we estimated for Microsoft.

During the period the only stock that has a positive alpha statistically different from zero
at the 1% significance level is Nvidia. For the other stocks, we cannot reject the null
hypothesis that the alpha is different from zero. The alpha of Nvidia is indeed impressive.
It has out-performed the market by 3.90% per month during the last 10 years.



Finally, the table below shows the pairwise correlations between each stock and the
market.

Table 3: The table shows the pairwise correlations and the square of their values between excess
monthly returns for Citigroup (C), BlackRock (BLK), Nvidia (NVDA), and Tesla (TSLA) and
the market portfolio proxied by SPY using data from June-2015 until June-2025.

Correlation Correlation Squared

BLK 0.818 0.668
C 0.741 0.550
NVDA 0.580 0.337
TSLA 0.454 0.206

As expected, the square of the correlation corresponds to the R-squared reported in
Table 2.

Implications of the Model

When you run a regression of the excess returns of a security on the excess returns of
the market, the residuals are automatically orthogonal to the regressor. Therefore, in
equation (1) we must have that Cov(R,,, e) = 0 for all securities.

The crucial assumption of the single index model is that the only systematic source of
risk is the exposure of each security to the market. The implication of this assumption is
that the covariance of the residuals between two securities is zero as long as their excess
returns are not perfectly correlated.

We saw before that if A and B are perfectly correlated, we must have that Ry = wRjp for
some w # 0. If this was the case, the covariance between e4 and ep is not zero even
though they are different assets. More precisely, we have that

Cov(ea, ep) = Cov(es, we,) = wa?(ey) # 0,

provided that w # 0, i.e., you do not invest everything in the risk-free asset.
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IN the following, when we talk about two different assets it is implicitly assumed that their

excess returns are not perfectly correlated, unless stated otherwise.

Covariance Structure

The covariance of the excess returns between securities i and j is

COV(Ri, R]) = COV((li + ﬁiRM + e, aj + ,B]RM + e])
= BiBj Cov(Ry, Ry) (8)
= BiBof;-
The previous expression says that in the single index model, the covariance between of

any two different securities is given by their exposures to the market and the variance of

the market. We can express equation (8) in terms of correlations as

Cov(Ry,Rj) _ BiBjos

p. . = =
2 0;0; 0i0;
Gipim TiPjM
iPi,M 9jPj 0_1\24 (9)
_ oM oM
O'iO'j
= Pi,mMPj M-

Therefore, in the single-index model, all pairwise correlations between two assets can be
computed as the product of their correlations with the market.
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