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Utility Theory Under Uncertainty

Introduction

In a single periodmodel, agentsmust decide today howmuch to consume and howmuch

to save for later. In this note we take that decision as given, and assume that agents

derive their utility from consumption at the end of the period. As is common in finance,

consumption is represented by a single good. Agents prefermore to less, but themarginal

utility of each additional unit of consumption is decreasing, i.e., the last bite is never as

good as the first one.

We capture this intuition by a utility function 𝑢 ∶ ℝ+ → ℝ. The domain of the utility

function is real consumption and therefore cannot be negative. In the following, we

assume that 𝑢(𝑐) is continuous and differentiable of all orders. The level of utility is not

important, and can even be negative, but we assume that the utility function is increasing

and strictly concave.1 Mathematically, it must be the case that 𝑢′(𝑐) > 0 and 𝑢″(𝑐) < 0.

In some cases it will also be useful to consider utility functions such that 𝑢′(0) = ∞, that

is, in starvation an extra unit of consumption provides an infinite amount of extra utility.

A common choice of utility function is

𝑢(𝑐) =
𝑐1−𝛾 − 1

1 − 𝛾
,

1A function 𝑓 ∶ 𝐷 → ℝ is concave if

𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2) ≥ 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2)

for all 𝑥1, 𝑥2 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 1. The function is strictly concave if the inequality is strict.
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where 𝛾 ≥ 0. A special case occurs when 𝛾 = 1, since2

lim
𝛾→1

𝑐1−𝛾 − 1

1 − 𝛾
= lim

𝛾→1

1 + (1 − 𝛾) ln(𝑐) − 1

1 − 𝛾
= ln(𝑐).

This function is called power utility if 𝛾 ≠ 1 and log utility if 𝛾 = 1.3 The marginal utility in

this case is given by 𝑢′(𝑐) = 𝑐−𝛾.

Another common utility function is

𝑢(𝑐) = −𝑒−𝑎𝑐,

called the exponential utility function. We will see that both types of utility functions

induce different attitudes under uncertainty.

Expected Utility and Risk Aversion

The analysis in the next two sections closely follows Chapter 1 in Ingersoll (1987). Denote

by
∼
𝑊 thewealth of the agent at the end of the period. This wealth is generated by investing

a certain amount today. In general,
∼
𝑊 is unknown today and can be thought as a random

variable definedover a probability space (Ω,P). Weuse the tilde on topof𝑊 to emphasize

that the wealth is unknown today.

When faced with uncertainty, the utility of final consumption is also random. Thus, the

agent is not somuchworried about the level of consumption she is going to get, but rather

she is more worried about the utility shemight get from that level of consumption. We

canmodel the agent’s behavior using the concept of expected utility. The utility derived

by a random consumption
∼
𝑊 is given by

𝑈(
∼
𝑊) = E(𝑢(

∼
𝑊)).

2Remember that

𝑦𝑥 = exp(𝑥 ln(𝑦)) ≈ 1 + 𝑥 ln(𝑦)

for small x.
3Many textbooks and programming languages use log instead of ln. In these notes I will use ln to denote

the natural logarithm.
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Thus, we have that
∼
𝑊1≿

∼
𝑊2 if𝑈(

∼
𝑊1) ≥ 𝑈(

∼
𝑊2), and

∼
𝑊1∼

∼
𝑊2 if𝑈(

∼
𝑊1) = 𝑈(

∼
𝑊2). Note

that the expected utility of a certain level of wealth𝑊 is just 𝑢(𝑊).

Consider now a random variable ̃𝜀 such that E( ̃𝜀) = 0 and V( ̃𝜀) > 0. We say that an agent

is risk-averse if she prefers a certain level of wealth𝑊 over a randompayoffwith the same

expected value. If we define
∼
𝑊= 𝑊+ ̃𝜀, we have that E(

∼
𝑊) = 𝑊, but V(

∼
𝑊) > 0 = V(𝑊).

Thus, the agent is risk-averse if

𝑢(𝑊) > E(𝑢(𝑊 + ̃𝜀)). (1)

In order to understand better the notion of risk-aversion, wewill use the following result.

Property 1 (Jensen’s Inequality). Let 𝑓 ∶ 𝐷 → ℝ be a twice-continuously differentiable

and strictly concave function, and 𝑋 a random variable defined in a probability space

(Ω,P) such that the range of 𝑋 is contained in the domain of 𝑓, and V(𝑋) > 0. Then we

have that

𝑓(E(𝑋)) > E(𝑓(𝑋)).

Proof

Let𝑚 = E(𝑋). The second-order Taylor expansion of 𝑓 around𝑚 is

𝑓(𝑥) = 𝑓(𝑚) + 𝑓′(𝑚)(𝑥 − 𝑚) +
1

2
𝑓″(𝜉𝐿)(𝑥 − 𝑚)2,

where 𝜉𝐿 is between𝑚 and 𝑥. Let 𝑥 = 𝑋 and take expectations to find

E(𝑓(𝑋)) = 𝑓(E(𝑋)) +
1

2
𝑓″(𝜉𝐿)V(𝑋) < 𝑓(E(𝑋)),

since 𝑓″(𝜉𝐿) < 0 and V(𝑋) > 0.

Jensen’s inequality shows that strict concavity in 𝑢 implies risk-aversion. The converse is

also true. Consider a risk-averse investor with utility function 𝑢 and a gamble ̃𝜀 that pays

(1 − 𝑞)𝑎with probability 𝑞 and−𝑞𝑎with probability 1 − 𝑞. The gamble is fair since

E( ̃𝜀) = 𝑞(1 − 𝑞)𝑎 − (1 − 𝑞)𝑞𝑎 = 0.
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A risk-averse investor, though, dislikes the gamble implying

𝑢(𝑊) > E(𝑢(𝑊 + ̃𝜀)) = 𝑞𝑢(𝑊 + (1 − 𝑞)𝑎) + (1 − 𝑞)𝑢(𝑊 − 𝑞𝑎). (2)

Because𝑊 = 𝑞𝑊 + (1 − 𝑞)𝑎 + (1 − 𝑞)(𝑊 − 𝑞𝑎) for all values of 𝑎 and 𝑞 such that

𝑊 + (1 − 𝑞)𝑎 and𝑊 − 𝑞𝑎 are in the domain of 𝑢, equation (2) implies that 𝑢 is strictly

concave.

Property 2 (Risk Aversion and Concavity of the Utility Function). An agent is risk-averse

as defined in (1) if and only if her utility function is strictly concave.

In many situations, we are forced to take on a risky gamble. For example, if you buy a car

you face the risk of an accident that can induce in costly repairs. Many people chose to

pay for insurance and hence reduce the risk of the car. In our framework, we define the

insurance premium as themaximum amount that an agent is willing to pay to eliminate

the risk.

To formalize this notion, consider an asset with value𝑊. After you buy the asset, you can

either face the risk of owning the asset producing a wealth of𝑊 + ̃𝜀, or payΠ𝑖 to insure

the asset, which guarantees a certain wealth of𝑊 −Π𝑖. An agent is indifferent between

the two choices if

𝑢(𝑊 − Π𝑖) = E(𝑢(𝑊 + ̃𝜀)). (3)

The value of Π𝑖 that solves (3) is called the insurance premium. We comparing two

agents attitudes towards risk, the agent who is willing to pay the most for insurance is

more risk averse than the other.

In the previous analysis, since the agent is indifferent between the risky gamble and

getting𝑊 −Π𝑖,we call this difference the certainty equivalent.

Example 1. Suppose the economy can be in one of the following two states: (i) Boom

or “good” state and (ii) Recession or “bad” state, which can occur with equal probability.

Consider a risky asset that would have a price of $50 in the good state and $10 in the bad

state, which currently trades at $30. Two investors are evaluating this asset.
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The utility function of the first investor (A) is

𝑢(𝑊) = 10 ln(𝑊),

whereas for the second investor (B) we have

𝑢(𝑊) = 2𝑊 + 5.

What is the maximum price that investors A and B would be willing to pay for the risky

asset?

The expected utility of the risky asset for investor A is

𝐸(𝑈) = 0.5(10 ln(10)) + 0.5(10 ln(50)) = 31.0730.

Therefore, the maximum price that the agent is willing to pay for the asset is its certainty

equivalent (𝐶𝐸), i.e.,

10 ln(𝐶𝐸) = 31.0730

ln(𝐶𝐸) = 3.1073

𝐶𝐸 = exp(3.1073) = $22.36.

For investor B, the expected utility of the risky asset is

𝐸(𝑈) = 0.5(2 × 10 + 5) + 0.5(2 × 50 + 5) = 65.

Themaximum price that the agent is willing to pay for the asset is its certainty equivalent:

2 × 𝐶𝐸 + 5 = 65

2 × 𝐶𝐸 = 60

𝐶𝐸 = $30.
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Local Risk Aversion

Intuitively, a function that is more concave should induce more risk aversion than a

function that is less concave. We can formalize this intuition by looking at the insurance

premium for a gamble with a very small variance.

Let E( ̃𝜀) = 0 and V( ̃𝜀) > 0. We know that the insurance premiumΠ𝑖 solves 𝑢(𝑊 −Π𝑖) =

E(𝑢(𝑊 + ̃𝜀)).

First, do a Taylor expansion of first order of 𝑢(𝑊 − Π𝑖) around𝑊:

𝑢(𝑊 − Π𝑖) ≈ 𝑢(𝑊) + 𝑢′(𝑊)(𝑊 − Π𝑖 −𝑊)

= 𝑢(𝑊) − 𝑢′(𝑊)Π𝑖.
(4)

Second, do a Taylor expansion of second order of 𝑢(𝑊 + ̃𝜀) around𝑊:

𝑢(𝑊 + ̃𝜀) ≈ 𝑢(𝑊) + 𝑢′(𝑊)(𝑊 + ̃𝜀 −𝑊) +
1

2
𝑢″(𝑊)(𝑊 + ̃𝜀 −𝑊)2

= 𝑢(𝑊) + 𝑢′(𝑊) ̃𝜀 +
1

2
𝑢″(𝑊) ̃𝜀2

E(𝑢(𝑊 + ̃𝜀)) ≈ 𝑢(𝑊) +
1

2
𝑢″(𝑊)𝜎2𝜀 .

(5)

Equating (4) and (5) we find that:

Π𝑖 ≈ −
1

2

𝑢″(𝑊)

𝑢′(𝑊)
𝜎2𝜀 . (6)

The previous expression shows that for a initial wealth of𝑊, the insurance premium

depends positively on the local curvature of the utility function at that point as measured

by−𝑢″(𝑊).

We denote by

ARA = −
𝑢″(𝑊)

𝑢′(𝑊)
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the coefficient of absolute risk-aversion, and by

RRA = −
𝑢″(𝑊)

𝑢′(𝑊)
𝑊

the coefficient of relative risk-aversion.

Example 2. Take

𝑢(𝐶) =
𝐶1−𝛾 − 1

1 − 𝛾

Then 𝑢′(𝐶) = 𝐶−𝛾 and 𝑢″(𝐶) = −𝛾𝐶−𝛾−1, implying that

𝑅𝑅𝐴 = −�
−𝛾𝑊−𝛾−1

𝑊−𝛾
�𝑊 = 𝛾

Power utility is an example of a function that exhibits constant relative risk-aversion.
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