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Probability Basics

These notes introduce basic probability concepts crucial to understanding themodern

investment theory approach. Investment theory aims to understand how to allocate

resources to different assets whose future payoffs are uncertain. To model the future

uncertainty of prices and cash flows, we can rely on well-established mathematical

concepts that summarize the expected rewards and risks of investing in a portfolio of

financial assets.

In the following, there is only a finite number of future possibilities to simplify the mathe-

matical exposition. For example, the future price of a stock can go up, stay constant, or go

down. However, all the results presented in this chapter hold if we relax this assumption

and allow for an infinite number of future outcomes.

Sets

A set is a collection of objects. The objects of a set canbe anything youwant. For example,

a set may contain numbers, letters, cars, or pictures. In our case, we will be concerned

of sets that contain future possibilities or outcomes that can occur.

One way to define a set is to enumerate its elements. For example, the set of all integers

from 1 to 10 is

𝐴 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Once we have defined a set, we can answer if an object is an element of the set or not.

For example, the number 3 is an element of 𝐴 whereas the number 20 is not. We use

the symbol ∈ to denote membership of a set and ∉ to denote the contrary. Therefore, we

have that 3 ∈ 𝐴 and 20 ∉ 𝐴.
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Some sets can have an infinite number of elements. For example, the natural numbers

are defined as

ℕ = {0, 1, 2, 3, …},

where the triple dots mean that if 𝑛 is inℕ, then 𝑛 + 1 is also inℕ.

Since all elements of 𝐴 are alsomembers ofℕ, we say that 𝐴 is a subset ofℕ and write

it as 𝐴 ⊂ ℕ. Using this terminology, we can redefine the set 𝐴 defined above in a more

Pythonicway:

𝐴 = {𝑛 ∈ ℕ ∶ 𝑛 < 11}.

If we are studying sets of natural numbers, it makes sense to define the universe to beℕ

and sets under study will be subsets of the universe.

Now, define the set 𝐵 as

𝐵 = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

The intersection between 𝐴 and 𝐵 is the set denoted 𝐴 ∩ 𝐵whosemembers are both in

𝐴 and 𝐵. Using the sets defined above, we have that

𝐴 ∩ 𝐵 = {6, 7, 8, 9, 10}.

The union of the sets 𝐴 and𝐵 is the set denoted 𝐴 ∪ 𝐵whosemembers are either in 𝐴, 𝐵,

or both. Thus, using our previously defined sets we have that

𝐴 ∪ 𝐵 = {1, 2, 3, … , 14, 15}.

The set difference of 𝐴 and 𝐵 is the set denoted 𝐴 ∖ 𝐵whosemembers are in 𝐴 but are

not members of 𝐵. Thus,

𝐴 ∖ 𝐵 = {1, 2, 3, 4, 5}

and

𝐵 ∖ 𝐴 = {11, 12, 13, 14, 15}.

The complement of 𝐴 is the set denoted by 𝐴𝐶 whosemembers are not in 𝐴. Of course
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this statement only makes sense if we define a universe where the elements not in 𝐴 can

live. If the universe isℕ, then

𝐴𝐶 = ℕ ∖ 𝐴 = {11, 12, 13, …}.

Similarly,

𝐵𝐶 = {0, 1, 2, 3, 4, 5} ∪ {21, 22, 23, …}.

Note that if you take all the elements of 𝐴 out of 𝐴 you end up with an empty set, that

is 𝐴 ∖ 𝐴 = {}. We typically denote the empty set by ∅, but is good to keep in mind that

∅ = {}. In our universe of natural numbers, no natural number is a member of the empty

set. We can write this formally as 𝑛 ∉ ∅, ∀𝑛 ∈ ℕ. Thus, the empty set is a subset of any

subset ofℕ.

The cardinality of the set 𝐴, denoted by |𝐴|, counts the number of elements in 𝐴. We

then have that |𝐴| = |𝐵| = 10 and |𝐶| = 3. The empty set has cardinality 0 whereas the

cardinality ofℕ is denoted ℵ0.

The power set of a set 𝐶, denoted by𝒫(𝐶), is the set containing all possible subsets of 𝐶.

For example, if 𝐶 = {1, 2, 3}, then

𝒫(𝐶) = {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.

Clearly, the power sets of 𝐴 and 𝐵 are much bigger. For a given set 𝐴, the cardinality of its

power set is 2|𝐴|. Therefore,𝒫(𝐴) and𝒫(𝐵) contain each 210 = 1024 different sets.

Finally, theCartesian product of 𝐴 and 𝐵 is the set denoted by 𝐴 × 𝐵whosemembers

are all the pairwise combinations of the elements of 𝐴 and 𝐵.

𝐴 × 𝐵 6 7 … 15

1 (1, 6) (1, 7) … (1, 15)

2 (2, 6) (2, 7) … (2, 15)

⋮ ⋮ ⋮ ⋱ ⋮

10 (10, 6) (10, 7) … (10, 15)

The cardinality of𝐴×𝐵 is equal to the product of the cardinalities of𝐴 and𝐵, i.e., |𝐴×𝐵| =
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|𝐴| × |𝐵|.

Outcomes and Events

In probability theory, a finite sample space is a non-empty finite set denoted byΩ. The

sample space includes all possible outcomes that can occur. A probability measure is a

function that assigns to each element𝜔 ofΩ a number in [0, 1] so that

�

𝜔∈Ω

P(𝜔) = 1.

An event 𝐴 is a subset ofΩ, and we define the probability of that event occurring as

P(𝐴) = �

𝜔∈𝐴

P(𝜔). (1)

Such a finite probability space is denoted by (Ω,P).

An immediate consequence of (1) is that P(Ω) = 1. Furthermore, if 𝐴 and 𝐵 are disjoint

sets ofΩwe have that

P(𝐴 ∪ 𝐵) = �

𝜔∈𝐴∪𝐵

P(𝜔)

= �

𝜔∈𝐴

P(𝜔) + �

𝜔∈𝐵

P(𝜔)

= P(𝐴) + P(𝐵).

If we denote by 𝐴𝐶 the complement of 𝐴 in Ω, the last expression implies that P(𝐴) +

P(𝐴𝐶) = 1. Also, becauseΩ𝐶 = ∅, we also have that P(Ω) + P(∅) = 1, or P(∅) = 0.

Example 1. IfΩ = {𝜔1, 𝜔2, 𝜔3}, then

𝒫(Ω) = {∅, {𝜔1}, {𝜔2}, {𝜔3}, {𝜔1, 𝜔2}, {𝜔2, 𝜔3}, {𝜔1, 𝜔3}, {𝜔1, 𝜔2, 𝜔3}}

defines the collection of all possible events that we canmeasure. As we saw previously,

the cardinality of𝒫(Ω) grows exponentially with the size ofΩ.
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The function P such that P(𝜔1) = 1/2, P(𝜔2) = 1/4, and P(𝜔3) = 1/4 defines a proba-

bility measure onΩ. For example, we have that P({𝜔1, 𝜔3}) = 1/2 + 1/4 = 3/4.

Random Variables

Definition

If (Ω,P) is a finite probability space, a random variable is a real-valued function defined

onΩ.

Example 2. Consider a sample space with four possible outcomesΩ = {𝜔1, 𝜔2, 𝜔3, 𝜔4}.

The table below describes the possible values of three random variables denoted by 𝑋, 𝑌

and 𝑍.

Outcome 𝑋 𝑌 𝑍

𝜔1 -10 20 15

𝜔2 -5 10 -10

𝜔3 5 0 15

𝜔4 10 0 -10

Observing the values of 𝑋 provides perfect information about which event happened. For

example, if 𝑋 = 5 then we know that𝜔3 occurred.

Knowing the values of 𝑌 or 𝑍, on the other hand, does not provide the same amount of

information. If we learn that 𝑌 = 0 we only know that either 𝜔3 or 𝜔4 occurred. If we

denote byℱ𝑌 the set of events that can be generated by 𝑌, we have that

ℱ𝑌 = {∅, {𝜔1}, {𝜔2}, {𝜔1, 𝜔2}, {𝜔3, 𝜔4}, {𝜔1, 𝜔3, 𝜔4}, {𝜔2, 𝜔3, 𝜔4}, Ω}.

The information set provided by 𝑍 is even smaller, since

ℱ𝑍 = {∅, {𝜔1, 𝜔3}, {𝜔2, 𝜔4}, Ω}.
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Thus, a random variable does not necessarily provide with all the information generated

by the probability spaceΩ.

Expectation and Variance

If 𝑋 is a random variable defined on a finite probability space (Ω,P), the expectation or

expected value of 𝑋 is defined to be

E𝑋 = �

𝜔∈Ω

𝑋(𝜔)P(𝜔),

whereas the variance of 𝑋 is

V(𝑋) = E(𝑋 − E𝑋)2.

The standard deviation is the square-root of the variance, i.e., 𝜎𝑋 = �V(𝑋).

Example 3. Consider the sample spaceΩ = {𝜔1, 𝜔2, 𝜔3} in which we define the proba-

bility measure P such that P(𝜔1) = 1/2, P(𝜔2) = 1/4, and P(𝜔3) = 1/4. There are two

random variables 𝑋 and 𝑌 that take values inΩ according to the table below.

Outcome Probability 𝑋 𝑌

𝜔1 1/2 10 2

𝜔2 1/4 8 40

𝜔3 1/4 4 20

Using this information, we can compute the expectation of each random variable.

E𝑋 =
1

2
× 10 +

1

4
× 8 +

1

4
× 4 = 8,

E𝑌 =
1

2
× 2 +

1

4
× 40 +

1

4
× 20 = 16.
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Having computed the expectations of 𝑋 and 𝑌, we can compute their variances as

V(𝑋) =
1

2
× (10 − 8)2 +

1

4
× (8 − 8)2 +

1

4
× (4 − 8)2 = 6,

V(𝑌) =
1

2
× (2 − 16)2 +

1

4
× (40 − 16)2 +

1

4
× (20 − 16)2 = 246.

Finally, the standard deviations of 𝑋 and 𝑌 are 𝜎𝑋 = √6 ≈ 2.45 and 𝜎𝑌 = √246 ≈ 15.68,

respectively.

Covariance

The covariance between two random variables 𝑋 and 𝑌 defined on a probability space

(Ω,P) is defined as

Cov(𝑋, 𝑌) = E(𝑋 − E𝑋)(𝑌 − E𝑌),

and their correlation is

𝜌𝑋,𝑌 =
Cov(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
.

The correlation between any two random variables is always between -1 and 1.

Proof

Let 𝜎𝑋 and 𝜎𝑌 denote the standard deviations of 𝑋 and 𝑌, respectively. We can then

compute

E((𝑋 − E𝑋)𝜎𝑌 + (𝑌 − E𝑌)𝜎𝑋)
2 = (𝜎2𝑋𝜎

2
𝑌 + 2𝜎𝑋𝜎𝑌 Cov(𝑋, 𝑌) + 𝜎2𝑌𝜎

2
𝑋)

= 2𝜎𝑋𝜎𝑌(𝜎𝑋𝜎𝑌 + Cov(𝑋, 𝑌)),

which implies 𝜎𝑋𝜎𝑌 + Cov(𝑋, 𝑌) ≥ 0 or−𝜎𝑋𝜎𝑌 ≤ Cov(𝑋, 𝑌).

Similarly,

E((𝑋 − E𝑋)𝜎𝑌 − (𝑌 − E𝑌)𝜎𝑋)
2 = (𝜎2𝑋𝜎

2
𝑌 − 2𝜎𝑋𝜎𝑌 Cov(𝑋, 𝑌) + 𝜎2𝑌𝜎

2
𝑋)

= 2𝜎𝑋𝜎𝑌(𝜎𝑋𝜎𝑌 − Cov(𝑋, 𝑌)),

which implies 𝜎𝑋𝜎𝑌 − Cov(𝑋, 𝑌) ≥ 0 orCov(𝑋, 𝑌) ≤ 𝜎𝑋𝜎𝑌.
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Thus, we conclude that

−1 ≤
Cov(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
≤ 1,

or equivalently−1 ≤ 𝜌𝑋,𝑌 ≤ 1.

Example 4. Continuing with Example 3, we have that

Cov(𝑋, 𝑌) =
1

2
× (10 − 8)(2 − 16) +

1

4
(8 − 8)(40 − 16) +

1

4
(4 − 8)(20 − 16) = −18.

Thus, 𝜌𝑋,𝑌 ≈ −0.47.

The covariance of 𝑋 and 𝑌 can also be expressed as

Cov(𝑋, 𝑌) = E(𝑋𝑌) − E(𝑋) E(𝑌).

Proof

Cov(𝑋, 𝑌) = E(𝑋 − E(𝑋))(𝑌 − E(𝑌))

= E[𝑋(𝑌 − E(𝑌))] − E[E(𝑋)(𝑌 − E(𝑌))]

= E(𝑋𝑌) − E[𝑋 E(𝑌)] − E(𝑋) E(𝑌 − E(𝑌))

= E(𝑋𝑌) − E(𝑋) E(𝑌).

Probability Mass Function

For discrete random variables, the probability mass function (or pmf) is a real-valued

function that specifies the probability that the random variable 𝑋 is equal to a certain

value 𝑥, i.e.,

𝑝𝑋(𝑥) = P(𝜔 ∈ Ω ∶ 𝑋(𝜔) = 𝑥).
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Example 5. Suppose we define a probability measure P to the random variables 𝑋 and 𝑌

defined in Example 2 according to the table below.

Outcome P 𝑋 𝑌

𝜔1 0.10 -10 20

𝜔2 0.30 -5 10

𝜔3 0.40 5 0

𝜔4 0.20 10 0

We have that the probability mass function of 𝑋 is

𝑝𝑋(𝑥) =

⎧
⎪

⎨
⎪
⎩

0.10 if 𝑥 = −10,

0.30 if 𝑥 = −5,

0.40 if 𝑥 = 5,

0.20 if 𝑥 = 10.

The probability mass function of 𝑌 only loads on three different values for 𝑌.

𝑝𝑌(𝑦) =

⎧
⎪

⎨
⎪
⎩

0.60 if 𝑦 = 0,

0.30 if 𝑦 = 10,

0.10 if 𝑦 = 20.

It is sometimes easier to visualize the probability mass function by plotting the probability

of different values of the random variable.

It is apparent from the pictures that 𝑝𝑋(𝑥) = 0 if 𝑥 ∉ {−10,−5, 5, 10}. Indeed, the set

{𝜔 ∈ Ω ∶ 𝑋(𝜔) = 𝑥} is empty for all 𝑥 not equal to−10,−5, 5, or 10. Similarly, 𝑝𝑌(𝑦) = 0

if 𝑦 ∉ {0, 10, 20}.

To simplify notation, we will often write {𝑋 = 𝑥} to denote the set {𝜔 ∈ Ω ∶ 𝑋(𝜔) = 𝑥}.

Using this notation, we have that 𝑝𝑋(𝑥) = P(𝑋 = 𝑥).
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(a) The function 𝑝𝑋(𝑥) defines the probability of 𝑋

being equal to 𝑥 = {−10,−5, 5, 10}.
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(b) The function 𝑝𝑌(𝑦) defines the probability of 𝑌

being equal to 𝑦 = {0, 10, 20}.

Figure 1: The figure plots the probability mass function of the random variables 𝑋 and 𝑌.

If a random variable is defined for𝑚 different values of 𝑥, we can re-write the expectation

of a random variable as

E(𝑋) =

𝑚

�

𝑖=1

𝑥𝑖𝑝𝑋(𝑥𝑖), (2)

which is commonly used in statistics.

For two random variables 𝑋 and 𝑌 defined in (Ω, ℙ), the set {𝑋 = 𝑥, 𝑌 = 𝑦} denotes all

outcomes inΩ that satisfy {𝑋 = 𝑥} and {𝑌 = 𝑦}. Therefore, we have that

{𝑋 = 𝑥, 𝑌 = 𝑦} = {𝑋 = 𝑥} ∩ {𝑌 = 𝑦}.

The function

𝑝𝑋,𝑌(𝑥, 𝑦) = P(𝑋 = 𝑥, 𝑌 = 𝑦)

is called the joint probability mass function of 𝑋 and 𝑌.

Example 6. The joint pmf of the random variables defined in Example 5 is given in the

table below.

10



𝑋 ∖ 𝑌 0 10 20

−10 0 0 0.1

−5 0 0.3 0

5 0.4 0 0

10 0.2 0 0

The function 𝑝𝑋,𝑌(𝑥, 𝑦) hasmany zeros since in Example 5 there are only four outcomes.

Any other outcome then has probability zero of occurring.

Example 7. Wecan generate any joint pmf for two random variables as long as the sumof

all probabilities is equal to one. The table below reports the joint probabilities of a random

variable 𝑋 taking values in [−1, 0, 1] and a random variable 𝑌 taking values in [0, 1, 2, 3].

𝑋 ∖ 𝑌 0 1 2 3

−1 0.12500 0.09375 0.06250 0.03125

0 0.06250 0.12500 0.12500 0.06250

1 0.03125 0.06250 0.09375 0.12500

In this case the underlying probability space has at least 3 × 4 = 12 possible outcomes.

The figure below plots the joint pmf of 𝑋 and 𝑌.

To plot the joint pmf of two random variables we need a three-dimensional graph.

Wecanuse the joint pmf to compute the expectationof a functionof two randomvariables.

Indeed, we have that

E(𝑓(𝑋, 𝑌)) =

𝑚

�

𝑥=1

𝑛

�

𝑗=1

𝑓(𝑥𝑖, 𝑦𝑗)𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗). (3)

If we write 𝜇𝑋 = E(𝑋) and 𝜇𝑦 = E(𝑌), equation (3) implies that the covariance of 𝑋 and 𝑌

can be computed as

Cov(𝑋, 𝑌) =

𝑚

�

𝑥=1

𝑛

�

𝑗=1

(𝑥𝑖 − 𝜇𝑋)(𝑦𝑗 − 𝜇𝑌)𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗).
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Figure 2: The figure plots the joint probability mass function of 𝑋 and 𝑌 in Example 7.

The joint pmf contains all the information of 𝑋 and 𝑌 since we can recover the individual

pmfs of 𝑋 and 𝑌 from it. Indeed, we have that

𝑝𝑋(𝑥) =

𝑛

�

𝑗=1

𝑝𝑋,𝑌(𝑥, 𝑦𝑗)

and

𝑝𝑌(𝑦) =

𝑚

�

𝑖=1

𝑝𝑋,𝑌(𝑥𝑖, 𝑦).

It is important to note that the joint pmf not only contains the individual information of

two random variables but also captures their mutual dependence.

Independence

We say that two events 𝐴 and 𝐵 are independent if P(𝐴 ∩ 𝐵) = P(𝐴)P(𝐵).

Example 8. Suppose that the weather tomorrow can be either sunny, fair or rainy. In

addition, a certain stock tomorrow can either go up or down in price.
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We can define

𝑊 = {sunny, fair, rainy}

and

𝑆 = {up, down}.

The set of outcomes can be described as all possible pairwise combinations of weather

tomorrow and the stock price movement. The sample space Ω is then the cartesian

product of𝑊 and 𝑆, i.e.,Ω = 𝑊 × 𝑆.

We can then define the weather events

Sunny = {(sunny, up), (sunny, down)},

Fair = {(fair, up), (fair, down)},

Rainy = {(rainy, up), (rainy, down)}.

The table below describes the probabilities for tomorrow’s weather.

Weather Sunny Fair Rainy

Probability 0.3 0.5 0.2

Similarly, the stock events can be defined as

Up = {(sunny, up), (fair, up), (rainy, up)},

Down = {(sunny, down), (fair, down), (rainy, down)}.

The probabilities of the stock price going up or down are described in the table below.

Stock Up Down

Probability 0.6 0.4

If the weather does not affect the likelihood of the stock going up or down, we should

expect to see on sunny days 60% of the time the stock going up and 40% of those days

the stock going down.
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That is, if the weather tomorrow and the stock price movement are independent events,

we should expect

P(Stock ∩Weather) = P(Stock)P(Weather),

where Stock is either Up or Down, andWeather is either Sunny, Fair, or Rainy.

The table below describes the combined probabilities of the stock price movement and

the weather tomorrow that are consistent with the independence of those events.

Stock\Weather Sunny Fair Rain

Up 0.18 0.30 0.12

Down 0.12 0.20 0.08

In the table, the weather does not change the relative proportions of the probabilities for

the stock price.

The previous example shows how to generate independent events out of two finite prob-

ability spaces (Ω1,P1) and (Ω2,P2). If we define Ω = Ω1 × Ω2 and let P(𝜔1, 𝜔2) =

P1(𝜔1)P2(𝜔2) for each 𝜔1 ∈ Ω1 and 𝜔2 ∈ Ω2, the pair (Ω,P) is a well-defined finite

probability space. In this new probability space, the events𝐴 = 𝜔1×Ω2 and𝐵 = Ω1×𝜔2

are independent for any𝜔1 ∈ Ω1 and𝜔2 ∈ Ω2.

Proof

We have that

P(𝐴) = �

𝜔2∈Ω2

P(𝜔1, 𝜔2)

= �

𝜔2∈Ω2

P1(𝜔1)P2(𝜔2)

= P1(𝜔1) �

𝜔2∈Ω2

P2(𝜔2)

= P1(𝜔1).
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Similarly, P(𝐵) = P2(𝑤2). Since𝐴∩𝐵 = {(𝜔1, 𝜔2)}, we have that P(𝐴∩𝐵) = P(𝐴)P(𝐵),

proving that 𝐴 and 𝐵 are independent.

Example 9. The sample space Ω is always independent from any event 𝐴 ⊂ Ω since

P(𝐴 ∩ Ω) = P(𝐴) = P(𝐴)P(Ω). Intuitively, an outcome always happens independently

of whether 𝐴 happens or not.

Two random variables 𝑋 and 𝑌 are independent if the events {𝑋 = 𝑥} and {𝑌 = 𝑦} are

independent. Thus, if 𝑋 and 𝑌 are independent we have that

P(𝑋 = 𝑥, 𝑌 = 𝑦) = P(𝑋 = 𝑥)P(𝑌 = 𝑦),

or equivalently

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦).

An important consequence of independence is that if 𝑋 and 𝑌 are two independent

random variables, then

E(𝑋𝑌) = E(𝑋) E(𝑌). (4)

Proof

If the domains of 𝑋 and 𝑌 are {𝑥1, 𝑥2, … , 𝑥𝑚} and {𝑦1, 𝑦2, … , 𝑦𝑛}, respectively, we can then

write

E(𝑋) =

𝑚

�

𝑖=1

𝑥𝑖𝑝𝑋(𝑥𝑖),

E(𝑌) =

𝑛

�

𝑗=1

𝑦𝑗𝑝𝑌(𝑦𝑗).
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Thus,

E(𝑋) E(𝑌) = �

𝑚

�

𝑖=1

𝑥𝑖𝑝𝑋(𝑥𝑖)��

𝑛

�

𝑗=1

𝑦𝑗𝑝𝑌(𝑦𝑗)�

=

𝑚

�

𝑖=1

𝑛

�

𝑗=1

𝑥𝑖𝑦𝑗𝑝𝑋(𝑥𝑖)𝑝𝑌(𝑦𝑗)

=

𝑚

�

𝑖=1

𝑛

�

𝑗=1

𝑥𝑖𝑦𝑗𝑝𝑋,𝑌(𝑥𝑖, 𝑦𝑗)

= E(𝑋𝑌).

Equation (4) implies that if 𝑋 and 𝑌 are independent, their covariance is equal to zero.

Indeed,

Cov(𝑋, 𝑌) = E(𝑋𝑌) − E(𝑋) E(𝑌)

= E(𝑋) E(𝑌) − E(𝑋) E(𝑌)

= 0.

However, the opposite statement is not true.

Example 10. Consider two random variables 𝑋 and 𝑌 defined in the table below.

Outcome P 𝑋 𝑌

𝜔1 0.40 -1 0

𝜔2 0.30 1 1

𝜔3 0.30 1 -1

We have that

E(𝑋) = 0.4 × (−1) + 0.6 × 1 = 0.2,

E(𝑌) = 0.4 × 0 + 0.3 × 1 + 0.3 × (−1) = 0,

E(𝑋𝑌) = 0.4 × (−1) × 0 + 0.3 × 1 × 1 + 0.3 × 1 × (−1) = 0.

Therefore,Cov(𝑋, 𝑌) = 0 − 0.2 × 0 = 0, which shows that 𝑋 and 𝑌 are uncorrelated.
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However, the two random variables are not independent. If we know that 𝑋 = −1 then

we know that 𝑌 = 0. Similarly, learning that 𝑌 = 1 tells us that 𝑋 = 1.

Linear Combinations

In investment theory, we usually study linear combinations of random variables of the

form 𝑍 = 𝛼𝑋 + 𝛽𝑌. The expectation of 𝑍 is just a linear combination of the expectations

of 𝑋 and 𝑌,

E𝑍 = 𝛼 E𝑋 + 𝛽 E𝑌. (5)

The variance of 𝑍, though, includes not only the variances of 𝑋 and 𝑌 but also their

covariances,

V(𝑍) = 𝛼2 V(𝑋) + 𝛽2 V(𝑌) + 2𝛼𝛽Cov(𝑋, 𝑌). (6)

This is an important result which is at the heart of portfolio diversification.

Proof

The expectation of 𝑍 is computed as

E𝑍 = E(𝛼𝑋 + 𝛽𝑌)

= �

𝜔∈Ω

(𝛼𝑋(𝜔) + 𝛽𝑌(𝜔))P(𝜔)

= 𝛼 �

𝜔∈Ω

𝑋(𝜔)P(𝜔) + 𝛽 �

𝜔∈Ω

𝑌(𝜔)P(𝜔)

= 𝛼 E𝑋 + 𝛽 E𝑌.
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The variance of 𝑍 is computed as

V(𝑍) = V(𝛼𝑋 + 𝛽𝑌)

= E(𝛼𝑋 + 𝛽𝑌 − E(𝛼𝑋 + 𝛽𝑌))2

= E(𝛼(𝑋 − E𝑋) + 𝛽(𝑌 − E𝑌))2

= E(𝛼2(𝑋 − E𝑋)2 + 𝛽2(𝑌 − E𝑌)2 + 2𝛼𝛽(𝑋 − E𝑋)(𝑌 − E𝑌))

= 𝛼2 E(𝑋 − E𝑋)2 + 𝛽2 E(𝑌 − E𝑌)2 + 2𝛼𝛽 E(𝑋 − E𝑋)(𝑌 − E𝑌)

= 𝛼2 V(𝑋) + 𝛽2 V(𝑌) + 2𝛼𝛽Cov(𝑋, 𝑌).

More generally, consider the random variables 𝑋1, 𝑋2, … , 𝑋𝑛, and form a new random

variable 𝑋 such that

𝑋 = 𝛼1𝑋1 + 𝛼2𝑋2 +…+ 𝛼𝑛𝑋𝑛,

where 𝛼𝑖 ∈ ℝ for all 𝑖 ∈ {1, 2, … , 𝑛}.

The expectation of 𝑋 is a linear combination of the expectations of 𝑋1, 𝑋2, … , 𝑋𝑛. The

variance of 𝑋, though, takes into account of all covariances between 𝑋𝑖 and 𝑋𝑗, for 𝑖, 𝑗 =

1, 2, … , 𝑛. Indeed, we have that

V(𝑋) =

𝑛

�

𝑖=1

𝑛

�

𝑗=1

𝛼𝑖𝛼𝑗 Cov(𝑋𝑖, 𝑋𝑗). (7)

The previous expression can be simplified if the random variables 𝑋1, 𝑋2, … , 𝑋𝑛 are in-

dependent from each other. In such case, we have that Cov(𝑋𝑖, 𝑋𝑗) = 0 for all 𝑖 ≠ 𝑗.

Recognizing thatCov(𝑋𝑖, 𝑋𝑖) = V(𝑋𝑖), equation (7) implies that

V(𝑋) =

𝑛

�

𝑖=1

𝛼2𝑖 V(𝑋𝑖). (8)

Example11. Suppose that𝑋1, 𝑋2, … , 𝑋𝑛 are independent randomvariableswith the same

variance denoted by 𝜎2. Define 𝑋 to be the sum of these random variables so that

𝑋 = 𝑋1 + 𝑋2 +…𝑋𝑛.

18



Equation (8) implies that

V(𝑋) =

𝑛

�

𝑖=1

V(𝑋𝑖) = 𝑛𝜎2.
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