Problem Set 4

Instructions: This problem set is due on 9/26 at 11:59 pm CST and is an individual assignment. All problems must be handwritten. Scan your work and submit a PDF file.

Problem 1. Consider a non-dividend paying stock whose returns follow a diffusion such that

$$\frac{dS}{S} = \mu dt + \sigma dB,$$

where B is a one-dimensional Browninan motion. The risk-free rate is denoted by r. If Λ is a stochastic discount factor such that

$$\frac{d\Lambda}{\Lambda} = -rdt - \frac{\lambda}{\sigma}dB,$$

what should be the sign of $\left(\frac{d\Lambda}{\Lambda}\right)\left(\frac{dS}{S}\right)$ if $\mu < r$?

Problem 2. Suppose that you have two independent Brownian motions B_1 and B_2 . How can you build a new Brownian motion B_3 using B_1 and B_2 so that $(dB_2)(dB_3) = \rho dt$.

Problem 3. Suppose the SDF is given by

$$\frac{d\Lambda}{\Lambda} = -rdt - \lambda_1 dB_1 - \lambda_2 dB_2 - \dots - \lambda_n dB_n,$$

where $B_1, B_2, ..., B_n$ are independent Brownian motions. What does it mean if one of the λ 's is equal to zero?

Problem 4. Consider two assets whose price processes are given by

$$\frac{d\mathbf{S}}{\mathbf{S}} = \boldsymbol{\mu}dt + \boldsymbol{\sigma}d\mathbf{z},$$

where $d\mathbf{z}$ is a vector of three independent Brownian motions B_1 , B_2 , and B_3 . You know that

$$\boldsymbol{\sigma} = \begin{pmatrix} 0.3 & -0.1 & 0.2 \\ 0.15 & 0.2 & -0.05 \end{pmatrix}.$$

- a. Compute the instantaneous correlation between the returns of each asset.
- b. Find a Brownian motion $B_4 = a_1B_1 + a_2B_2 + a_3B_3$ whose increments are independent from the instantaneous returns of the two assets.

Problem 5. Consider a stochastic discount factor in continuous time given by

$$\frac{d\Lambda}{\Lambda} = -r_f dt - \lambda_1 dB_1 - \lambda_2 dB_2,$$

where B_1 and B_2 are independent Brownian motions. Suppose that you have two non-dividend paying assets with the following dynamics:

$$\frac{dS_1}{S_1} = \mu_1 dt + \sigma_1 dB_1,$$

and

$$\frac{dS_2}{S_2} = \mu_2 dt + \sigma_{21} dB_1 + \sigma_{22} dB_2.$$

Suppose that $r_f = 0.05$, $\mu_1 = 0.15$, $\mu_2 = 0.20$, $\sigma_1 = 0.3$, $\sigma_{21} = 0.5$, and $\sigma_{22} = -0.1$.

- a. Compute the instantaneous correlation between the returns of each asset.
- b. Determine λ_1 and λ_2 .

Problem 6. In this problem we consider a probability space (Ω, \mathcal{F}, P) in which time goes from 0 to T. Consider two non-dividend paying assets S_1 and S_2 that follow geometric Brownian motions

$$\frac{dS_1}{S_1} = \mu_1 dt + \sigma_1 dB_1,$$

$$\frac{dS_2}{S_2} = \mu_2 dt + \sigma_2 dB_2,$$

where B_1 and B_2 are two potentially correlated Brownian motions such that $dB_1dB_2 = \rho_{1,2}dt$. There is a stochastic discount factor Λ so that each process ΛS_i is a local martin-

gale for i = 1, 2. The SDF is characterized by

$$\frac{d\Lambda}{\Lambda} = -rdt - \lambda dB,$$

where B is a Brownian motion correlated with B_1 and B_2 so that $dBdB_i = \rho_i$ for i = 1, 2, and λ is the market price of risk of B. The money-market account is denoted by β and grows geometrically at the risk-free rate r so that

$$\frac{d\beta}{\beta} = rdt.$$

a. Show that

$$\lambda = \frac{\mu_i - r}{\rho_i \sigma_i}$$
 for $i = 1, 2$.

Explain why $ho_i=1$ for efficient assets.

b. Let P* denote the risk-neutral measure defined by

$$\frac{d\,\mathsf{P}^*}{d\,\mathsf{P}}=\mathcal{E}_T,$$

where $\mathcal{E} = \Lambda \beta$. Compute B_1^* and B_2^* so that both terms are Brownian motions under P^* .

- c. Compute the instantaneous correlation between B_1^* and B_2^* .
- d. If you were to form a zero-cost portfolio in which you go long S_1 and you go short S_2 , what should be the risk-neutral drift of such portfolio?