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Utility Theory Under Uncertainty

Introduction

In a single period model, agents must decide today how much to consume and how much
to save for later. In this note we take that decision as given, and assume that agents
derive their utility from consumption at the end of the period. As is common in finance,
consumptionis represented by a single good. Agents prefer more to less, but the marginal
utility of each additional unit of consumption is decreasing, i.e., the last bite is never as

good as the first one.

We capture this intuition by a utility function u : R¥ —» R. The domain of the utility
function is real consumption and therefore cannot be negative. In the following, we
assume that u(c) is continuous and differentiable of all orders. The level of utility is not
important, and can even be negative, but we assume that the utility function is increasing
and strictly concave.” Mathematically, it must be the case that u’(c) > 0 and u”(c¢) < 0.
In some cases it will also be useful to consider utility functions such that u’(0) = oo, that

is, in starvation an extra unit of consumption provides an infinite amount of extra utility.

A common choice of utility function is

"Afunction f : D - Ris concave if

fltx,+ (A —-0x) 2tf(x) + (1 - )f(x2)

forallx;,x, € Xand 0 < t < 1. The function is strictly concave if the inequality is strict.



where ¥y > 0. A special case occurs wheny = 1, since?

y clr -1 _ 1+(1=p)lnc) -1 _
]/I—rHT]/ —yl_rp1 1=y = In(c).

This function is called power utility if y # 1 and log utility if y = 1.2 The marginal utility
in this case is given by u'(c) = ¢77.

Another common utility function is
u(c) = —e™4,

called the exponential utility function. We will see that both types of utility functions
induce different attitudes under uncertainty.

Expected Utility and Risk Aversion

The analysis in the next two sections closely follows Chapter 1 in Ingersoll (1987). Denote
by W the wealth of the agent atthe end of the period. This wealth is generated by investing
a certain amount today. In general, W is unknown today and can be thought as a random
variable defined over a probability space (£, P). We use the tilde on top of W to emphasize
that the wealth is unknown today.

When faced with uncertainty, the utility of final consumption is also random. Thus, the
agentis not so much worried about the level of consumption she is going to get, but rather
she is more worried about the utility she might get from that level of consumption. We
can model the agent’s behavior using the concept of expected utility. The utility derived
by a random consumption Wis given by

UW) = E(u(W)).

2Remember that
y* =exp(xIn(y)) ~ 1+ xn(y)
for small x.

3Many textbooks and programming languages use log instead of n. In these notes | will use ln to denote
the natural logarithm.



Thus, we have that W, =W, if U(W,) = U(W5), and W,~W, if U(W,) = U(W,). Note
that the expected utility of a certain level of wealth W is just u(W).

Consider now a random variable £ such that E(§) = 0 and V(€) > 0. We say that an agent
is risk-averse if she prefers a certain level of wealth W over a random payoff with the same
expected value. If we define W= W + &, we have that E(VT/) = W, but V(VT/) >0=VW).
Thus, the agent is risk-averse if

u(W) > E(u(W + ¢)). (1)

In order to understand better the notion of risk-aversion, we will use the following result.

Property 1 (Jensen’s Inequality). Let f : D = R be a twice-continuously differentiable
and strictly concave function, and X a random variable defined in a probability space
(Q, P) such that the range of X is contained in the domain of f,and V(X) > 0. Then we
have that

f(E(X)) > E(f (X))

Proof

Letm = E(X). The second-order Taylor expansion of f around m is

1
f@) = fm) +f'm)(x —m) + o f"(§1) (x —m)?,

where &, is between m and x. Let x = X and take expectations to find

1
E(f(X)) = f(E(XD) + S f" () VX) < F(E(X)),
since f"(§;) < 0and V(X) > 0. O

Jensen’s inequality shows that strict concavity in u implies risk-aversion. The converse is
also true. Consider a risk-averse investor with utility function u and a gamble £ that pays
(1 — g)a with probability g and —ga with probability 1 — q. The gamble is fair since

E@ =q(1-q¢a—-(1—-qg)qa=0.



A risk-averse investor, though, dislikes the gamble implying
u(W) > E@uW + &) = qu(W + (1 - q)a) + (1 — Qu(W — qa). (2)

Because W = qW + (1 — q)a + (1 — q)(W — qa) for all values of a and q such that
W + (1 — g)aand W — ga are in the domain of u, equation (2) implies that u is strictly

concave.

Property 2 (Risk Aversion and Concavity of the Utility Function). An agent is risk-averse
as defined in (1) if and only if her utility function is strictly concave.

In many situations, we are forced to take on a risky gamble. For example, if you buy a car
you face the risk of an accident that can induce in costly repairs. Many people chose to
pay for insurance and hence reduce the risk of the car. In our framework, we define the
insurance premium as the maximum amount that an agent is willing to pay to eliminate
the risk.

To formalize this notion, consider an asset with value W. After you buy the asset, you can
either face the risk of owning the asset producing a wealth of W + &, or pay II; to insure
the asset, which guarantees a certain wealth of W — II;. An agent is indifferent between
the two choices if

u(W —11;) = E(u(W + &)). (3)

The value of II; that solves (3) is called the insurance premium. We comparing two
agents attitudes towards risk, the agent who is willing to pay the most for insurance is
more risk averse than the other.

In the previous analysis, since the agent is indifferent between the risky gamble and

getting W — II;, we call this difference the certainty equivalent.

Example 1. Suppose the economy can be in one of the following two states: (i) Boom
or “good” state and (ii) Recession or “bad” state, which can occur with equal probability.
Consider a risky asset that would have a price of $50 in the good state and $10 in the bad
state, which currently trades at $30. Two investors are evaluating this asset.



The utility function of the first investor (A) is
u(W) =10ln(W),
whereas for the second investor (B) we have

u(W) =2W +5.
What is the maximum price that investors A and B would be willing to pay for the risky

asset?

The expected utility of the risky asset for investor A is
E(U) =0.5(10n(10)) + 0.5(10n(50)) = 31.0730.

Therefore, the maximum price that the agent is willing to pay for the asset is its certainty
equivalent (CE), i.e.,
10ln(CE) = 31.0730

In(CE) = 3.1073
CE = exp(3.1073) = $22.36.

For investor B, the expected utility of the risky asset is
E(U)=0.5(2%x10+5)+0.5(2x50+5) = 65.

The maximum price that the agent is willing to pay for the asset is its certainty equivalent:

2XCE+5=65
2XCE =60
CE = $30.



Local Risk Aversion

Intuitively, a function that is more concave should induce more risk aversion than a
function that is less concave. We can formalize this intuition by looking at the insurance

premium for a gamble with a very small variance.

Let E(§) = 0and V(&) > 0. We know that the insurance premium I1; solves u(W —1II;) =
E(u(W + §)).

First, do a Taylor expansion of first order of u(W — II;) around W:

uW —-1I) = uW) +u' W)(W = 1I; = W)

, (4)
=u(W) —u' (W)II,.
Second, do a Taylor expansion of second order of u(W + &) around W:
~ ! I~ 1 " I~
uW+ & ~uW)+u' W)W +E—-W) + S WY(W + & —W)?
1
=u(W) +u' (W) + Eu”(W)és~2 (5)
1
Ew(W + &) ~u(W) + Eu”(W)ogz.
Equating (4) and (5) we find that:
1u" (W)
N o 0 6)

LR Ty %

The previous expression shows that for a initial wealth of W, the insurance premium
depends positively on the local curvature of the utility function at that point as measured
by —u" (W).

We denote by




the coefficient of absolute risk-aversion, and by

RRA = ww)
u'(W)
the coefficient of relative risk-aversion.
Example 2. Take
clv—-1
u(C) = ——

Thenu'(C) = C7Y andu”(C) = —yC~ Y1, implying that

_‘}/W_y_l
RRA = — <W> W = Y

Power utility is an example of a function that exhibits constant relative risk-aversion. [l
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