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The Stochastic Discount Factor

In this note I generalize the notion of stochastic discount factor by showing that it emerges

naturally as a consequenceof the lawof one price. The absenceof arbitrage opportunities

implies the existence of a strictly positive discount factor. Thus, in complete markets

there is a unique strictly positive stochastic discount factor. Original sources of the

analysis can be found in Hansen and Richard (1987), Hansen and Jagannathan (1991)

and Hansen and Jagannathan (1997).

The Set of Traded Payoffs

In this economy, not all payoffs are necessarily traded unless the market is complete.

We denote by 𝑋 the linear subspace of traded payoffs spanned by {𝑥1, 𝑥2, … , 𝑥𝑁}, where

𝑁 ≤ 𝑆 and all payoffs are assumed to be linearly independent. Denote by

x′ = (𝑥1, 𝑥2, … , 𝑥𝑁) (1)

a vector containing all the basis payoffs. In the following, we assume that the Gram

matrix

E(xx′) =

𝑆

�

𝑠=1

𝑞(𝑠)x(𝑠)x′(𝑠)

is invertible.

We can create other payoffs by buying or selling our𝑁 original assets. Any 𝑥 ∈ 𝑋 can be

expressed as:

𝑥 =

𝑁

�

𝑖=1

𝑎𝑖𝑥𝑖, (2)

for 𝑎𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 𝑁. Finally, we denote by 𝜋𝑖 the price of asset 𝑖 for 1 ≤ 𝑖 ≤ 𝑁, and by

𝜋′ = (𝜋1, 𝜋2, … , 𝜋𝑛)
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a vector containing the prices. of the𝑁 basis payoffs.

The Law of One Price

Now, we would like to know if there is a way to create a pricing functional 𝑝 ∶ 𝑋 → ℝ that

gives the price of any traded payoff. Clearly, we have that 𝑝(𝑥𝑖) = 𝜋𝑖 for 1 ≤ 𝑖 ≤ 𝑁, and

our intuition tells us that the price of any other asset should be given in terms of the other

asset prices. If this was not the case, this would be an arbitrage.

Example 1. Suppose that 𝑝(𝑥) = 1 and 𝑝(𝑦) = 2. There is also an asset 𝑧 = 3𝑥 + 4𝑦

such that 𝑝(𝑧) = 12. Is there an arbitrage opportunity?

Of course! We could buy 3 units of 𝑥 and 4 units of 𝑦 and bundle them as 𝑧. The cost of

the bundle is $11, but we can sell it for $12, generating a riskless profit of $1 per trade.

Since there is no shortage of these securities, we could continue doing it until the prices

of 𝑥 and 𝑦 go up and/or the price of 𝑧 goes down.

In order to avoid these type of situations, we will assume the following.

Assumption1 (The LawofOnePrice). Suppose that𝑥𝑖 ∈ 𝑋 and𝑎𝑖 ∈ ℝ for 𝑖 ∈ 1, 2, … , 𝑁 ≤

𝑆. If 𝑥 = ∑
𝑁
𝑖=1 𝑎𝑖𝑥𝑖 ∈ 𝑋, then

𝑝(𝑥) =

𝑁

�

𝑖=1

𝑎𝑖𝑝(𝑥𝑖). (3)

In competitivemarkets, the law of one price (LOOP) guarantees that the price of a basket

of stocks is equal to the sum of the prices of its constituents. This logic is at the heart of

how Exchange-Traded Funds (ETF) operate, as the next example shows.

Example 2. An ETF is a type of investment fund that is traded on stock exchanges, similar

to individual stocks. ETFs hold a diversified portfolio of assets, such as stocks, bonds,

or commodities, which provides investors with broad exposure to specific markets or

investment strategies.

2



ETF arbitrage is the mechanism that helps keep the market price of an ETF in line with its

Net Asset Value (NAV). Authorized Participants (APs), typically large financial institutions,

have the ability to create or redeem ETF shares in large blocks called creation units.

When the ETFmarket price is higher than the NAV, APs can buy the underlying securities

of the ETF in the openmarket and then deliver them to the ETF issuer in exchange for new

ETF shares. The AP can then sell these ETF shares at the higher market price, making a

profit. This buying of underlying securities pushes their prices up, while the selling of new

ETF shares pushes the ETF price down, bringing the two prices closer together.

When the ETF market price is lower than the NAV, APs can buy ETF shares in the open

market and deliver them to the ETF issuer in exchange for the underlying securities. The

AP can then sell these underlying securities at the higher NAV price, making a profit. This

buying of ETF shares pushes their price up, while the selling of the underlying securities

pushes their prices down, again bringing the two prices closer together.

This creation and redemption process happens continuously and helps to keep the ETF

price in line with the NAV. The arbitrage opportunities are typically small but sufficient

for APs to engage in the process for profit, ensuring that the ETF price does not deviate

significantly from its NAV.

You can findmore information here.

The fact that themarket for ETFs is so liquid andworksflawlessly reassuresus that LOOP is

a reasonable axiom to start working from. The lawof one price implies the price functional

defined in (3) is a continuous linear functional, and the Riesz representation theorem

implies the existence of a stochastic discount factor 𝑥∗ that is also a payoff in 𝑋.

Therefore, it must be the case that

𝑥∗ =

𝑁

�

𝑖=1

𝑐𝑖𝑥𝑖 = c′x,

such that 𝑝(𝑥𝑖) = E(𝑥∗𝑥𝑖) for 1 ≤ 𝑖 ≤ 𝑁. Thus,

𝜋′ = E(𝑥∗x) = E(c′xx′) = c′ E(xx′),

3

https://www.blackrock.com/corporate/literature/whitepaper/viewpoint-etf-primary-trading-role-of-authorized-participants-march-2017.pdf
geometry-payoff-space.qmd#prp-riesz-representation-theorem


or

c′ = 𝜋′ E(xx′)−1.

We can now verify that the payoff

𝑥∗ = 𝜋′ E(xx′)−1x

is a valid discount factor. Take an arbitrary payoff 𝑥 = x′a ∈ 𝑋, and compute

E(𝑥∗𝑥) = E(𝜋′ E(xx′)−1xx′a)

= 𝜋′ E(xx′)−1 E(xx′)a

= 𝜋′a

= 𝑝(𝑥),

which shows that 𝑥∗ is a valid stochastic discount factor.

Property 1. Given a linear subspace 𝑋 ∈ 𝐿 of traded payoffs spanned by {𝑥1, 𝑥2, … , 𝑥𝑁},

where𝑁 ≤ 𝑆, the vector

𝑥∗ = 𝜋′ E(xx′)−1x ∈ 𝑋 (4)

is a valid stochastic discount factor.

Any other SDF𝑚will price the assets correctly, so that

E((𝑚 − 𝑥∗)𝑥) = E(𝑚𝑥) − E(𝑥∗𝑥) = 𝑝(𝑥) − 𝑝(𝑥) = 0.

This shows that we can create new SDFs by combining 𝑥∗ with any vector 𝑒 orthogonal to

𝒳. In other words, all the SDFs that price assets correctly in 𝑋 can be written as:

𝑚 = 𝑥∗ + 𝑒,

where 𝑒 𝑥 for all 𝑥 ∈ 𝑋.
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The Principle of No-Arbitrage

A violation to the law of one price is an arbitrage opportunity, but not all arbitrage oppor-

tunities are violations of the law of one price. Theremight be situations in which some

investors manage to build a payoff that is positive in some states and zero in others. In

competitive financial markets, the price of that payoffmust be positive, otherwise the

demand for that asset would be infinite.

Assumption 2 (Principle of No-Arbitrage). The price of a payoff that is positive in all states

and strictly positive in at least one state of the world must be positive.

The principle of no-arbitrage (PNA) is a stronger assumption than the LOOP, as the next

property shows.

Property 2.

PNA ⇒ LOOP.

Proof

We will prove this claim by contradiction. Assume that NA holds but not LOOP. Then

LOOP implies that the price of a zero payoffmust be zero. Without loss of generality, a

violation of LOOP implies that 𝑝0 = 𝑝(0) > 0.

Say thatwehave apayoff𝑥+ that is positive in somestates of theworld and zero otherwise,

and whose price is 𝑝 > 0. Form a portfolio that buys one unit of 𝑥+ and sells 𝑛 >
𝑝

𝑝0
units

of the zero payoff. The cost of that portfolio is

𝜋 = 𝑝 − 𝑛𝑝0 < 𝑝 −
𝑝

𝑝0
𝑝0 = 0,

but its payoff is positive in some states and zero otherwise, a contradiction.

Amore important consequence of PNA is that it implies the existence of a strictly positive

SDF, i.e., a SDF that is greater than zero in all states. The reverse is also true. There are no

arbitrage opportunities if there is one SDF that is strictly positive.
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Property 3.

PNA ⇔ ∃𝑚 > 0.

See page 4 in Duffie (2010) for a proof of this result. The proof uses the separating hy-

perplane theorem to separate the cone of strictly positive payoffs from the subspace of

traded assets.

Implementing the Model with Data

We can associate for any random variable 𝑦 ∈ 𝐿 the vector of payoffs

y =
⎛
⎜

⎝

𝑦(1)

𝑦(2)

⋮

𝑦(𝑆)

⎞
⎟

⎠

characterizing the value of 𝑦 in each state 𝑠 = 1,… , 𝑆. Therefore, we have a one-to-one

correspondence between the random variable 𝑦 ∶ 𝒮 → ℝ and the vector y ∈ ℝ𝑆 since the

𝑠-th coordinate of y corresponds to the value of 𝑦 in state 𝑠, i.e.,

y𝑠 = 𝑦(𝑠),

for all 𝑠 = 1,… , 𝑆.

Denote by

X =
⎛
⎜

⎝

x(1)

x(2)

⋮

x(𝑁)

⎞
⎟

⎠

the 𝑆 × 𝑁matrix whose rows are the values of the random vector x defined in (1) in each

state of the world. We can also interpret X as the matrix whose columns are the vector of

payoffs of each basis asset.

6



Arrow-Debreu Securities

The payoff space 𝐿 is complete and can be spanned by a basis of 𝑆 linearly independent

vectors. Define the random variable 𝑒𝑠 as

𝑒𝑠(𝑖) = �
1 if 𝑖 = 𝑠,

0 otherwise.

Thus, any payoff 𝑥 ∈ 𝐿 can be written as

𝑥 = 𝑥(1)𝑒1 + 𝑥(2)𝑒2 +⋯+ 𝑥(𝑁)𝑒𝑁, (5)

since in state 𝑠 the random variable 𝑥 is equal to 𝑥(𝑠) and the random variable 𝑒𝑠 pays

1.

Maximum Sharpe Ratio

Since E(𝑚𝑅) = 1, we have that

1 = E(𝑚𝑅) = E(𝑚) E(𝑅) + Cov(𝑚, 𝑅).

Therefore,

E(𝑅𝑖) − 𝑅𝑓 = −
Cov(𝑚, 𝑅𝑖)

E(𝑚)

= −
𝜌(𝑚, 𝑅𝑖)𝜎(𝑚)𝜎(𝑅𝑖)

E(𝑚)

Since |𝜌| ≤ 1we have that:

�
E(𝑅𝑖) − 𝑅𝑓

𝜎(𝑅𝑖)
� ≤

𝜎(𝑚)

E(𝑚)
(6)
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