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The Geometry of the Payoff Space

In this note | describe the mathematical structure of the payoff space that we will use to
characterize the space of traded payoffs and stochastic discount factors. Even though
the results described in this note apply to infinite dimensional Hilbert spaces, we will
restrict our attention to the study of finite dimensional Euclidean spaces.

Probability Structure

Uncertainty is represented by a finite set § = {1, ..., S} of states, defining a finite probabil-
ity space (§, ). The set of all random variables defined in § is denoted by L and is called
the payoff space. Thus, for any x € L we have that the vector (x(1), x(2), ..., x(5)) € RS
defines all the possible payoffs in each state, and the probability of getting a payoffin a
particular state is given by Pr(x = x(s)) = n(s) forall s € S. We assume throughout that
n(s) > Oforalls € S, thatis, we will not consider possible outcomes that happen with
probability zero.

The payoff space is clearly a linear vector space since forany x,y € Land a, 5 € Rwe
have that ax + [y € L. We endow the payoff space with aninner product(-,-) : LXL - R
defined such that for any x,y € L, we have that
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In finite-dimensional spaces, we can use the inner product to define the Euclidean norm

Il : L » R* forallx € L as
llx]l = v/ {x, x).

Clearly, ||x|| = 0 & x = 0. Therefore, the second moment of x defined as ||x||> = E(x?)
plays an important role since it allows us to asses the convergence of a series of payoffs
towards a certain payoff.



Projections

Given x,y € L, consider the vectors y, = axand z = y — y,. We say that y, is the
projection of y on the subspace generated by {x} if the norm of z is minimal. To obtain
the projection, we need to compute the a that minimizes ||z|| = ||y — ax|| = E(y — ax)?.

The first-order condition of this problem is:

0=E((y —ax)x) =(y — ax,x) = (z,x),

(x,y)
(x, x)

We say that two vectors x, y € L are orthogonalif theirinner productis equalto zero. Thus,

which implies that a = and(z,y,) = 0.

we have that y, 1 z, implying that the vector y can be decomposed into two orthogonal

components. Indeed, we have that

IvlI? = 11z + yxll? = 1zI1* + 2¢z, y2) + lyxll? = Nz11* + Iyl

which is a generalization of the classical Pythagorean theorem.

Property 1 (Orthogonal Decomposition). Given x,y € L, the projection of y on the sub-

X,
space generated by {x} is given by y,, = ix i}; x. The vector z = y — y, is orthogonal to
Yy, Implying that ’
112 = N1z11% + llyxll®. (1)

Equation (1) implies that ||y||? = ||v,||?, with equality occurring whenever y is proportional

to x. Therefore, we have that
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The previous expression is known as the Cauchy-Schwartz inequality and is fundamental

in the study of Euclidean vector spaces.



Property 2 (Cauchy-Schwartz Inequality). Given x,y € L we have that

16 < lxHIyll- (2)

Linear Functionals

Givenx,y € Land a, f € R, alinear functional f : L — R satisfies

flax + By) = af(x) + Bf(¥).

We say that the linear functional f : L — Ris bounded if

If Ol = M|l

forallx € L. In other words, the absolute value of the functional cannot grow infinitely for
afinite x. Abounded linear functional is also called a continuous linear functional. The

smallest M for which this inequality remains true is called the norm of f, i.e.,

|| = inf{M : |f(x)]| < M||x||, forallx € L}.

Foragivenm € L and any x € L, the functional

S

f(x) = (m,x) = E(mx) = Z n(s)m(s)x(s)

s=1

is linear since

f(ax + By) = E(m(ax + By)) = aE(mx) + BE(my) = af (x) + Bf(¥).

Furthermore, the Cauchy-Schwartz inequality implies that

IOl = [{m,x)| < |Iml[|x]],



showing that the linear functional f is bounded and hence continuous. Since the previous
inequality is an equality whenever x is proportional to m, we have that |[|m|| is the smallest
bound of f, showing that || f|| = ||m]||-

Conversely, consider a linear functional f : L - R. ThesetK = {x € L : f(x) = 0}
describes a hyperplane that can be described by a normal vector z. Thus, (x, z) = 0 for
allx € K. Wihtout loss of generality, assume that z has been appropriately scaled so that

f(z) =1.

Givenany x € L,we havethatx — f(x)z € Ksincef(x—f(x)z) = f(x) — f(x)f(z) = 0.
Moreover, z L K, implying that

0=(x—f(x)z2) =(x,2) = f(X)(z 2).

The previous expression implies that

Fe) = S8 my
x) = = (x,m),
(2,2)
Z . - . . .
where m = TEE The previous analysis is an important result known as the Riesz

representation theorem.

Property 3 (Riesz Representation Theorem). If f : L = R s a bounded linear functional,
there exists a unique vectorm € L such thatforallx € L, f(x) = (m, x). Furthermore,
we have ||f|| = ||¥|l and every m determines a unique bounded linear functional.
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