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The Geometry of the Payoff Space

In this note I describe the mathematical structure of the payoff space that we will use to

characterize the space of traded payoffs and stochastic discount factors. Even though

the results described in this note apply to infinite dimensional Hilbert spaces, we will

restrict our attention to the study of finite dimensional Euclidean spaces.

Probability Structure

Uncertainty is represented by a finite set 𝒮 = {1,… , 𝑆} of states, defining a finite probabil-

ity space (𝒮, 𝜋). The set of all random variables defined in 𝒮 is denoted by 𝐿 and is called

the payoff space. Thus, for any 𝑥 ∈ 𝐿we have that the vector (𝑥(1), 𝑥(2), … , 𝑥(𝑆)) ∈ ℝ𝑆

defines all the possible payoffs in each state, and the probability of getting a payoff in a

particular state is given by Pr(𝑥 = 𝑥(𝑠)) = 𝜋(𝑠) for all 𝑠 ∈ 𝑆. We assume throughout that

𝜋(𝑠) > 0 for all 𝑠 ∈ 𝒮, that is, we will not consider possible outcomes that happen with

probability zero.

The payoff space is clearly a linear vector space since for any 𝑥, 𝑦 ∈ 𝐿 and 𝛼, 𝛽 ∈ ℝwe

have that𝛼𝑥+𝛽𝑦 ∈ 𝐿. We endow the payoff spacewith an inner product ⟨⋅, ⋅⟩ ∶ 𝐿×𝐿 → ℝ

defined such that for any 𝑥, 𝑦 ∈ 𝐿,we have that

⟨𝑥, 𝑦⟩ = E(𝑥𝑦) =

𝑆

�

𝑠=1

𝜋(𝑠)𝑥(𝑠)𝑦(𝑠).

In finite-dimensional spaces, we can use the inner product to define the Euclidean norm

‖⋅‖ ∶ 𝐿 → ℝ+ for all 𝑥 ∈ 𝐿 as

‖𝑥‖ = �⟨𝑥, 𝑥⟩.

Clearly, ‖𝑥‖ = 0 ⇔ 𝑥 = 0. Therefore, the secondmoment of 𝑥 defined as ‖𝑥‖2 = E(𝑥2)

plays an important role since it allows us to asses the convergence of a series of payoffs

towards a certain payoff.
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Projections

Given 𝑥, 𝑦 ∈ 𝐿, consider the vectors 𝑦𝑥 = 𝛼𝑥 and 𝑧 = 𝑦 − 𝑦𝑥. We say that 𝑦𝑥 is the

projection of 𝑦 on the subspace generated by {𝑥} if the norm of 𝑧 is minimal. To obtain

the projection, we need to compute the 𝛼 that minimizes ‖𝑧‖ = ‖𝑦 − 𝛼𝑥‖ = E(𝑦 − 𝛼𝑥)2.

The first-order condition of this problem is:

0 = E((𝑦 − 𝛼𝑥)𝑥) = ⟨𝑦 − 𝛼𝑥, 𝑥⟩ = ⟨𝑧, 𝑥⟩,

which implies that 𝛼 =
⟨𝑥, 𝑦⟩

⟨𝑥, 𝑥⟩
and ⟨𝑧, 𝑦𝑥⟩ = 0.

We say that two vectors 𝑥, 𝑦 ∈ 𝐿 are orthogonal if their inner product is equal to zero. Thus,

we have that 𝑦𝑥 ⊥ 𝑧, implying that the vector 𝑦 can be decomposed into two orthogonal

components. Indeed, we have that

‖𝑦‖2 = ‖𝑧 + 𝑦𝑥‖
2 = ‖𝑧‖2 + 2⟨𝑧, 𝑦𝑥⟩ + ‖𝑦𝑥‖

2 = ‖𝑧‖2 + ‖𝑦𝑥‖
2,

which is a generalization of the classical Pythagorean theorem.

Property 1 (Orthogonal Decomposition). Given 𝑥, 𝑦 ∈ 𝐿, the projection of 𝑦 on the sub-

space generated by {𝑥} is given by 𝑦𝑥 =
⟨𝑥, 𝑦⟩

⟨𝑥, 𝑥⟩
𝑥. The vector 𝑧 = 𝑦 − 𝑦𝑥 is orthogonal to

𝑦𝑥, implying that

‖𝑦‖2 = ‖𝑧‖2 + ‖𝑦𝑥‖
2. (1)

Equation (1) implies that‖𝑦‖2 ≥ ‖𝑦𝑥‖
2,withequality occurringwhenever𝑦 is proportional

to 𝑥. Therefore, we have that

‖𝑦‖2 ≥ ‖𝑦𝑥‖
2 = �

⟨𝑥, 𝑦⟩

⟨𝑥, 𝑥⟩
𝑥�

2

=
⟨𝑥, 𝑦⟩2

‖𝑥‖2
.

The previous expression is known as the Cauchy-Schwartz inequality and is fundamental

in the study of Euclidean vector spaces.
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Property 2 (Cauchy-Schwartz Inequality). Given 𝑥, 𝑦 ∈ 𝐿we have that

|⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖‖𝑦‖. (2)

Linear Functionals

Given 𝑥, 𝑦 ∈ 𝐿 and 𝛼, 𝛽 ∈ ℝ, a linear functional 𝑓 ∶ 𝐿 → ℝ satisfies

𝑓(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦).

We say that the linear functional 𝑓 ∶ 𝐿 → ℝ is bounded if

|𝑓(𝑥)| ≤ 𝑀‖𝑥‖

for all 𝑥 ∈ 𝐿. In other words, the absolute value of the functional cannot grow infinitely for

a finite 𝑥. A bounded linear functional is also called a continuous linear functional. The

smallest𝑀 for which this inequality remains true is called the norm of 𝑓, i.e.,

‖𝑓‖ = inf{𝑀 ∶ |𝑓(𝑥)| ≤ 𝑀‖𝑥‖, for all 𝑥 ∈ 𝐿}.

For a given𝑚 ∈ 𝐿 and any 𝑥 ∈ 𝐿, the functional

𝑓(𝑥) = ⟨𝑚, 𝑥⟩ = E(𝑚𝑥) =

𝑆

�

𝑠=1

𝜋(𝑠)𝑚(𝑠)𝑥(𝑠)

is linear since

𝑓(𝛼𝑥 + 𝛽𝑦) = E(𝑚(𝛼𝑥 + 𝛽𝑦)) = 𝛼 E(𝑚𝑥) + 𝛽 E(𝑚𝑦) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦).

Furthermore, the Cauchy-Schwartz inequality implies that

|𝑓(𝑥)| = |⟨𝑚, 𝑥⟩| ≤ ‖𝑚‖‖𝑥‖,
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showing that the linear functional𝑓 is bounded and hence continuous. Since the previous

inequality is an equality whenever 𝑥 is proportional to𝑚,we have that ‖𝑚‖ is the smallest

bound of 𝑓, showing that ‖𝑓‖ = ‖𝑚‖.

Conversely, consider a linear functional 𝑓 ∶ 𝐿 → ℝ. The set 𝐾 = {𝑥 ∈ 𝐿 ∶ 𝑓(𝑥) = 0}

describes a hyperplane that can be described by a normal vector 𝑧. Thus, ⟨𝑥, 𝑧⟩ = 0 for

all 𝑥 ∈ 𝐾. Wihtout loss of generality, assume that 𝑧 has been appropriately scaled so that

𝑓(𝑧) = 1.

Given any 𝑥 ∈ 𝐿,we have that 𝑥 −𝑓(𝑥)𝑧 ∈ 𝐾 since 𝑓(𝑥 −𝑓(𝑥)𝑧) = 𝑓(𝑥)−𝑓(𝑥)𝑓(𝑧) = 0.

Moreover, 𝑧 ⊥ 𝐾, implying that

0 = ⟨𝑥 − 𝑓(𝑥)𝑧, 𝑧⟩ = ⟨𝑥, 𝑧⟩ − 𝑓(𝑥)⟨𝑧, 𝑧⟩.

The previous expression implies that

𝑓(𝑥) =
⟨𝑥, 𝑧⟩

⟨𝑧, 𝑧⟩
= ⟨𝑥,𝑚⟩,

where 𝑚 =
𝑧

‖𝑧‖2
. The previous analysis is an important result known as the Riesz

representation theorem.

Property 3 (Riesz Representation Theorem). If 𝑓 ∶ 𝐿 → ℝ is a bounded linear functional,

there exists a unique vector𝑚 ∈ 𝐿 such that for all 𝑥 ∈ 𝐿, 𝑓(𝑥) = ⟨𝑚, 𝑥⟩. Furthermore,

we have ‖𝑓‖ = ‖𝑦‖ and every𝑚 determines a unique bounded linear functional.
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