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Discount Factors in Continuous Time

Price Processes

In the following, we work in a probability space (Ω, ℱ,P). Uncertainty is driven by 𝐾

independent Brownianmotions such that

(𝑑B)(𝑑B)′ = I𝑑𝑡,

where B = �𝐵1 𝐵2 … 𝐵𝐾�
′

and I is a𝐾 × 𝐾 identity matrix.

We can always generate correlated Brownian motions by combining two independent

Brownian motions. For example, let 𝑍 = 𝜌𝐵1 + �1 − 𝜌2𝐵2 where |𝜌| ≤ 1. Then, 𝑍 is a

Brownian motion since (𝑑𝑍)2 = 𝜌2𝑑𝑡 + (1 − 𝜌2)𝑑𝑡 = 𝑑𝑡. Furthermore, 𝑍 and 𝐵1 are

instantaneously correlated since (𝑑𝑍)(𝑑𝐵1) = 𝜌(𝑑𝐵1)
2 = 𝜌𝑑𝑡.

More generally, any Brownianmotion 𝑍 correlated with 𝐵1, 𝐵2, … , 𝐵𝐾 is of the form

𝑍 =
1

�∑
𝐾
𝑘=1 𝑎

2
𝑘

𝐾

�

𝑘=1

𝑎𝑘𝐵𝑘,

where 𝑎1, 𝑎2, … , 𝑎𝐾 are real numbers, or in matrix notation

𝑍 =
1

√a′a
a′B.

Wemodel the price of risky assets as diffusions

𝑑𝑆

𝑆
= 𝜇𝑆(⋅)𝑑𝑡 + 𝜎𝑆(⋅)𝑑𝐵𝑆
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where the drift 𝜇(⋅) and the volatility of returns 𝜎(⋅)might depend on time 𝑡, uncertainty

𝜔 ∈ Ω, and potentially other state variables.

The total instantaneous return of an asset is given by

𝑑𝑆 + 𝐷𝑑𝑡

𝑆
=
𝑑𝑆

𝑆
+
𝐷

𝑆
𝑑𝑡,

where
𝐷

𝑆
is the dividend yield. The dividend yield of a stock determines the number of

new shares that the dividend process generates. Unlike cash dividends, the dividend

yield acts as if dividends are reinvested in the stock. Thus, we can always work with

dividend-reinvested assets instead. To see this, let

𝑑𝑋

𝑋
=
𝐷

𝑆
𝑑𝑡. (1)

Here 𝑋 represents the number of new shares accruing to the owner of the stock deter-

mined by the dividend yield. Note that

𝑋𝑡 = 𝑋0 exp��
𝑡

0

𝐷𝑢

𝑆𝑢
𝑑𝑢� , (2)

so the total number of shares grows exponentially with a growth rate equal to the dividend

yield of the asset. In other words, 𝑋𝑡 keeps track of the total number of shares at each

point in time.

The dividend-reinvested asset price is then

𝑃 = 𝑋𝑆,

where 𝑃 denotes the total value of this investment given by the number of shares times

the price per share. We can find the dynamics of 𝑃 by applying Ito’s lemma:

𝑑𝑃

𝑃
=
𝑑𝑆

𝑆
+
𝑑𝑋

𝑋
=
𝑑𝑆

𝑆
+
𝐷

𝑆
𝑑𝑡.

Not surprisingly, the dynamics of 𝑃 are characterized by capital gains and a dividend

yield.
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Wewill assume that there is a risk-free rate of return 𝑟. We do not always assume that

𝑟 is constant, as it could depend on time 𝑡,𝜔 or other state variables. We assume that

there is a money-market account 𝛽 that earns a risk-free rate. If we start with 𝛽0 in the

account, wemust have that
𝑑𝛽

𝛽
= 𝑟𝑑𝑡. (3)

We can solve for 𝛽 to find,

𝛽𝑡 = 𝛽0 exp��
𝑡

0

𝑟𝑠𝑑𝑠� . (4)

As mentioned before, we do not assume that 𝑟 is constant. In many applications, the

risk-free rate follows a diffusion such that

𝑑𝑟 = 𝜇𝑟(⋅)𝑑𝑡 + 𝜎𝑟(⋅)𝑑𝐵𝑟.

From Discrete to Continuous Time

Wewant to derive a stochastic discount factor that works discounting risky cash flows in

continuous time. It will be easier to derive the transition if we can abstract from dividends.

However, we cannot just make dividends disappear since the fundamental value of any

asset is the present value of all cash flow payments during the life of the asset; otherwise,

the asset would be a bubble.

Thus, let’s proceed as before and build a dividend-reinvested asset in discrete time. To

do this, we will use a dividend yield 𝑞 that is known at time 𝑡 and determines howmany

new shares of the asset we get next period. If the asset price at time 0 is 𝑆0, then at time 1

the asset price will be 𝑆1 and we will have 𝑞0 more shares of the asset, making our total

investment worth 𝑃1 = (1 + 𝑞0)𝑆1. If reinvest the dividends again, at time 2 the value of

our investment will be 𝑃2 = (1 + 𝑞0)(1 + 𝑞1)𝑆2. We can continue in this way to find

𝑃𝑡+1 = 𝑋𝑡+1𝑆𝑡+1,

where we define 𝑋𝑡+1 = ∏
𝑡
𝑖=0(1 + 𝑞𝑖). This definition for 𝑋𝑡+1 is the discrete-time equiv-

alent of equation (2) in continuous time.
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Now, the pricing equation implies that

𝑆𝑡 = E𝑡𝑚𝑡+1(1 + 𝑞𝑡)𝑆𝑡+1.

Multiplying both sides by∏
𝑡−1
𝑖=0(1 + 𝑞𝑖)we find

𝑃𝑡 = E𝑡𝑚𝑡+1𝑃𝑡+1. (5)

Thus, we can do all themath by assuming thatweworkwith a dividend-reinvested asset.

The previous expression is correct in discrete time but it is not the best way to work in

continuous time. First, assume that the stochastic discount factor we use is such that

𝑚 > 0 a.s. Then, take Λ0 > 0 and define Λ1 = 𝑚1Λ0, Λ2 = 𝑚2Λ1, so that Λ𝑡+1 =

𝑚𝑡+1Λ𝑡 > 0 for all 𝑡 ≥ 0.

We can now re-write equation (5) as

Λ𝑡𝑃𝑡 = E𝑡 Λ𝑡+1𝑃𝑡+1. (6)

Before passing to continuous time, note that we can recursively apply the previous ex-

pression to 𝑃𝑡+2, 𝑃𝑡+3, and so forth to find

Λ𝑡𝑃𝑡 = E𝑡 Λ𝑇𝑃𝑇,

for any 𝑇 = 𝑡 + 𝑛 > 𝑡. The process (Λ𝑃) is therefore a martingale. We need to be careful,

though, as we do not want the price process𝑃 to be a bubble. In terms of the traded asset

𝑆wemust have that

Λ𝑡𝑆𝑡 = E𝑡

𝑛

�

𝑖=1

Λ𝑡+𝑖𝐷𝑡+𝑖 + Λ𝑡+𝑛𝑆𝑡+𝑛.

The no-bubbles or transversality condition then implies that

lim
𝑛→∞

E𝑡 Λ𝑡+𝑛𝑆𝑡+𝑛 = 0.

In continuous time we do not have to wait forever for bubbles to appear since in any given

time interval we have an infinite number of transactions that can occur. Thus, we will
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have to be careful about what type of price processes we can admit.

Coming back to passing to continuous time, let’s denote the time interval by Δ𝑡 so that

equation (6) becomes

E𝑡(Λ𝑡+Δ𝑃𝑡+Δ − Λ𝑡𝑃𝑡) = 0.

If we now let Δ𝑡 → 0, the previous expression implies

E𝑡 𝑑(Λ𝑡𝑃𝑡) = 0.

We typically drop the time subscripts when there is not confusion of doing so and just

write

E𝑑(Λ𝑃) = 0. (7)

The previous expression asserts that the discounted dividend-reinvested price process is

a local martingale. We will discuss later situations in which this local martingale is in fact

a martingale.

Since Λ > 0, we have that

𝑑(Λ𝑃)

Λ𝑃
=
𝑑𝑃

𝑃
+
𝑑Λ

Λ
+
𝑑Λ

Λ

𝑑𝑃

𝑃

=
𝑑𝑆

𝑆
+
𝑑Λ

Λ
+
𝑑Λ

Λ

𝑑𝑆

𝑆
+
𝐷

𝑆
𝑑𝑡

=
𝑑(Λ𝑆)

Λ𝑆
+
𝐷

𝑆
𝑑𝑡.

Thus, E𝑑(Λ𝑃) = 0 is equivalent to

E𝑑(Λ𝑆) + Λ𝐷𝑑𝑡 = 0. (8)

Equation (8) is an alternative to equation (7) which makes explicit the dividend process in

pricing the asset. Both equations are the continuos time counterparts to 𝑝 = E(𝑚𝑥) in

discrete time, which in disguise is also saying that the discounted dividend-reinvested

price process is a local martingale.
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An SDF in Continuous Time

Let’s start computing the discounted process for themoneymarket account 𝛽 defined

earlier. Remember that
𝑑𝛽

𝛽
= 𝑟𝑑𝑡.

Thus,

𝑑(Λ𝛽) = Λ𝑑𝛽 + 𝛽𝑑Λ.

The pricing equation (8) implies that E𝑑(Λ𝛽) = 0, so that

E(Λ𝑑𝛽 + 𝛽𝑑Λ) = 0,

or

E�
𝑑Λ

Λ
� = − E�

𝑑𝛽

𝛽
� = −𝑟𝑑𝑡.

Thus, the drift of the SDF in continuous time determines the equilibrium continuously-

compounded risk-free rate. Remember that 𝑟 need not be deterministic but just an

adapted process to the filtration of the probability space.

Applying Ito’s lemma now to Λ𝑆we find that

𝑑(Λ𝑆) = 𝑆𝑑Λ + Λ𝑑𝑆 + 𝑑Λ𝑑𝑆,

or
𝑑(Λ𝑆)

Λ𝑆
=
𝑑Λ

Λ
+
𝑑𝑆

𝑆
+
𝑑Λ

Λ

𝑑𝑆

𝑆
.

Taking expectations both sides, equation (8) implies that

E�
𝑑𝑆

𝑆
� +

𝐷

𝑆
𝑑𝑡 = 𝑟𝑑𝑡 − �

𝑑Λ

Λ
��

𝑑𝑆

𝑆
� .

Property 1. Consider an asset 𝑆 that follows a diffusion

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝐵.
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If the asset pays a dividend yield 𝑞 = 𝐷/𝑆, and there are no arbitrage opportunities, it

must be the case that

(𝜇 + 𝑞 − 𝑟)𝑑𝑡 = −�
𝑑Λ

Λ
��

𝑑𝑆

𝑆
� . (9)

In words, the risk-premium of the asset equals minus the covariance of the SDF and the

asset’s returns.

Back to Consumption

We can always find the stochastic discount factor from themarginal utility of consump-

tion. Under additive utility, the stochastic discount factor takes the form Λ = 𝑒−𝛿𝑡𝑢′(𝑐).

This formulation is useful if we want to understand the link betweenmarginal utility of

consumption and discount factors or risk-neutral probabilities.

Applying Ito’s lemma to this particular Λwe find

𝑑Λ =
𝜕Λ

𝜕𝑐
𝑑𝑐 +

1

2

𝜕2Λ

𝜕𝑑𝑐2
(𝑑𝑐)2 +

𝜕Λ

𝜕𝑡
𝑑𝑡

= 𝑒−𝛿𝑡𝑢″(𝑐)𝑑𝑐 +
1

2
𝑒−𝛿𝑡𝑢‴(𝑐)(𝑑𝑐)2 − 𝛿𝑒−𝛿𝑡𝑢′(𝑐)𝑑𝑡,

or

𝑑Λ

Λ
= −𝛿𝑑𝑡 +

1

2

𝑐2𝑢‴(𝑐)

𝑢′(𝑐)
�
𝑑𝑐

𝑐
�

2

+
𝑐𝑢″(𝑐)

𝑢′(𝑐)

𝑑𝑐

𝑐
.

For power utility we have that

𝑑Λ

Λ
= −𝛿𝑑𝑡 +

1

2
𝛾(𝛾 + 1) �

𝑑𝑐

𝑐
�

2

− 𝛾
𝑑𝑐

𝑐
.

Let’s write
𝑑𝑐

𝑐
= 𝜇𝑐𝑑𝑡 + 𝜎𝑐𝑑𝐵𝑐.
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Assuming power utility, we have that

𝑑Λ

Λ
= �−𝛿 +

1

2
𝛾(𝛾 + 1)𝜎2𝑐 − 𝛾𝜇𝑐�𝑑𝑡 − 𝛾𝜎𝑐𝑑𝐵𝑐. (10)

Wecannow recover the risk-free rate dynamics in termsof consumption growth dynamics

using

𝑟 = −
1

𝑑𝑡
E�

𝑑Λ

Λ
� .

The model implies that the instantaneous risk-free rate is given by minus the drift of

𝑑Λ/Λ,

𝑟 = 𝛿 + 𝛾𝜇𝑐 −
1

2
𝛾(𝛾 + 1)𝜎2𝑐 .

The expression is very intuitive andhas important implications. First, real interest rates are

highwhen impatience (𝛿) is high sincemore impatient investors will require a high interest

rate to save. Furthermore, interest rates are high when expected consumption growth (𝜇𝑐)

is high. Indeed, if agents expect consumption to go up, they need to save less, pushing

bond prices down. Finally, interest rates are high when volatility of future consumption

growth (𝜎𝑐) is low. This phenomenon is usually called precautionary savings. If agents

are less afraid of future consumption growth, they bid bond prices down pushing interest

rates up.

We can also use this consumption-based asset pricing model to understand what is

called the equity premium puzzle. Consider an asset paying a dividend flow𝐷𝑑𝑡 and

following a diffusion
𝑑𝑆

𝑆
= 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑆

such that (𝑑𝐵𝑆)(𝑑𝐵𝑐) = 𝜌𝑑𝑡. Equations (9) and (10) imply

𝜇𝑆 + 𝐷/𝑆 − 𝑟 = 𝛾𝜌𝜎𝑐𝜎𝑆

In this simple asset pricing model with power utility, the risk premium of any risky as-

set is higher when risk aversion (𝛾) is high and/or the covariance of asset returns and

consumption growth is high.
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Since |𝜌| ≤ 1, the previous expression implies

�
𝜇𝑆 + 𝐷/𝑆 − 𝑟

𝜎𝑆
� ≤ 𝛾𝜎𝑐.

In the data, the Sharpe ratio of the market is around 0.5 whereas the standard deviation

of consumption growth is around 0.01. We need a RRA coefficient of at least 50 to explain

the risk-premium of the market! To solve this paradox, researchers have introduced

preferences that generate amore volatile stochastic discount factor, such as recursive

Epstein-Zin preferences or habits.

Generic SDFs in Continuous Time

There are𝑁 ≤ 𝐾 securities whose price process follow a diffusion

𝑑𝑆𝑖

𝑆𝑖
= 𝜇𝑖𝑑𝑡 +𝜎𝜎𝜎𝑖𝑑B, (11)

where𝜎𝜎𝜎𝑖 is a𝐾 × 1 vector. Each security pays continuously a dividend yield 𝑞𝑖𝑑𝑡.

Define

𝑑S

S
= �

𝑑𝑆1

𝑆1

𝑑𝑆2

𝑆2
…

𝑑𝑆𝑁

𝑆𝑁
�

′

and denote by𝜎𝜎𝜎 the𝑁 × 𝐾matrix whose rows are given by 𝜎𝑖 defined in (11). We have

that
𝑑S

S
= 𝜇𝜇𝜇𝑑𝑡 +𝜎𝜎𝜎𝑑B,

implying

�
𝑑S

S
��

𝑑S

S
�

′

= 𝜎𝜎𝜎𝜎𝜎𝜎′𝑑𝑡.

The𝑁×𝑁matrix𝜎𝜎𝜎𝜎𝜎𝜎′ determines the instantaneous covarianceof returns. Wecan verify

𝑑Λ

Λ
= −𝑟𝑑𝑡 − (𝜇𝜇𝜇 + q− 𝑟𝜄𝜄𝜄)

′
(𝜎𝜎𝜎𝜎𝜎𝜎′)

−1
𝜎𝜎𝜎𝑑B
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is an SDF that prices the 𝑁 original assets correctly. In the expression q denotes the

vector of dividend yields

q = �
𝐷1

𝑆1
,
𝐷2

𝑆2
, … ,

𝐷𝑁

𝑆𝑁
�

′

.

The Intertemporal CAPM

Let 𝑉(𝑊, z) denote the value function that the investor maximizes at each time. The level

of wealth𝑊 is of course a state variable. The value function also depends on the risks to

which all the assets are exposed, represented by z. In a more general setup, the marginal

utility of consumption is the same as themarginal utility of wealth, i.e.

𝑢′(𝑐) = 𝑉𝑊.

Themarginal value of any dollar must be the same in any use! We can then write the SDF

as

Λ = 𝑒−𝛿𝑡𝑉𝑊(𝑊, z).

Applying Ito’s lemma to Λwe find that:

𝑑Λ

Λ
= (⋅)𝑑𝑡 +

𝑊𝑉𝑊𝑊(𝑊, z)

𝑉𝑊(𝑊, z)

𝑑𝑊

𝑊
+
𝑉𝑊z′(𝑊, z)

𝑉𝑊(𝑊, z)
𝑑z. (12)

Thus

E�
𝑑𝑆

𝑆
� +

𝐷

𝑆
𝑑𝑡 − 𝑟𝑑𝑡 = rra

𝑑𝑊

𝑊

𝑑𝑆

𝑆
−
𝑉𝑊z′(𝑊, z)

𝑉𝑊(𝑊, z)
�𝑑z

𝑑𝑆

𝑆
� .
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