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Discount Factors in Continuous Time

Price Processes

In the following, we work in a probability space (Q,F,P). Uncertainty is driven by K
independent Brownian motions such that

(dB)(dB)’ = Idt,

!
where B = (B1 B, .. BK) and lis a K X K identity matrix.

We can always generate correlated Brownian motions by combining two independent
Brownian motions. For example, let Z = pB; + \/1——/0232 where |p| < 1. Then,Zis a
Brownian motion since (dZ)? = p2dt + (1 — p?)dt = dt. Furthermore, Z and B; are
instantaneously correlated since (dZ)(dB,) = p(dB;)? = pdt.

More generally, any Brownian motion Z correlated with By, B,, ..., Bk is of the form

K
1
7/ = —z akBk,

/ K =
Zk=1 alzc k=1

where a4, a,, ..., ag are real numbers, or in matrix notation

We model the price of risky assets as diffusions

as
<= us(-)dt + os(-)dBs



where the drift u(-) and the volatility of returns o (-) might depend on time ¢, uncertainty

w € (, and potentially other state variables.
The total instantaneous return of an asset is given by

dS + Ddt _ ds 4 Ddt
s s s
where g is the dividend yield. The dividend yield of a stock determines the number of
new shares that the dividend process generates. Unlike cash dividends, the dividend
yield acts as if dividends are reinvested in the stock. Thus, we can always work with
dividend-reinvested assets instead. To see this, let
dX D

7 = Edt (1)

Here X represents the number of new shares accruing to the owner of the stock deter-
mined by the dividend yield. Note that

tD
X = Xpexp (f —udu>, (2)
0 Su

so the total number of shares grows exponentially with a growth rate equal to the dividend
yield of the asset. In other words, X; keeps track of the total number of shares at each

pointin time.

The dividend-reinvested asset price is then
P =XS,

where P denotes the total value of this investment given by the number of shares times
the price per share. We can find the dynamics of P by applying Ito’s lemma:
dP_dS+dX_dS+Ddt
P s X § s
Not surprisingly, the dynamics of P are characterized by capital gains and a dividend

yield.



We will assume that there is a risk-free rate of return r. We do not always assume that
T is constant, as it could depend on time t, w or other state variables. We assume that
there is a money-market account 8 that earns a risk-free rate. If we start with 3, in the
account, we must have that

%ﬁ = rdt. (3)

t
B, = By exp ( j rsds). @
0

As mentioned before, we do not assume that r is constant. In many applications, the

We can solve for £ to find,

risk-free rate follows a diffusion such that

dr = u,()dt + o,(-)dB,.

From Discrete to Continuous Time

We want to derive a stochastic discount factor that works discounting risky cash flows in
continuous time. It will be easier to derive the transition if we can abstract from dividends.
However, we cannot just make dividends disappear since the fundamental value of any
asset is the present value of all cash flow payments during the life of the asset; otherwise,
the asset would be a bubble.

Thus, let’s proceed as before and build a dividend-reinvested asset in discrete time. To
do this, we will use a dividend yield g that is known at time t and determines how many
new shares of the asset we get next period. If the asset price attime 0 is S, then at time 1
the asset price will be S; and we will have gy more shares of the asset, making our total
investment worth P, = (1 + q¢)S;. If reinvest the dividends again, at time 2 the value of
our investment willbe P, = (1 + q¢)(1 + q4)S,. We can continue in this way to find

Pey1 = Xer1Se+1)

where we define X;q = l‘[fzo(l + q;). This definition for X;, 1 is the discrete-time equiv-
alent of equation (2) in continuous time.



Now, the pricing equation implies that

S¢ = Et M1 (1 + q)Sesa.

t—-1

Multiplying both sides by [];_; (1 + g;) we find

B =Emiy1Pryq. (5)

Thus, we can do all the math by assuming that we work with a dividend-reinvested asset.

The previous expression is correct in discrete time but it is not the best way to work in
continuous time. First, assume that the stochastic discount factor we use is such that
m > 0 a.s. Then, take Ay, > 0 and define A; = mAy, A, = myAq, sothat Ay =
my 1Ay > Oforallt = 0.

We can now re-write equation (5) as

A¢Pr = Bt Apyq Pryq. (6)

Before passing to continuous time, note that we can recursively apply the previous ex-
pression to P, ,, P, 3, and so forth to find

A¢P; = E¢ ArPyp,

forany T =t + n > t. The process (AP) is therefore a martingale. We need to be careful,
though, as we do not want the price process P to be a bubble. In terms of the traded asset
S we must have that n
ASe = Ey z At4iDevi + ApynSein-
i=1
The no-bubbles or transversality condition then implies that

llm Et At+nSt+n == 0.
n—-oo

In continuous time we do not have to wait forever for bubbles to appear since in any given

time interval we have an infinite number of transactions that can occur. Thus, we will



have to be careful about what type of price processes we can admit.

Coming back to passing to continuous time, let’s denote the time interval by At so that
equation (6) becomes
E¢(At+aPeva — AcP) = 0.

If we now let At — 0, the previous expression implies
Et d(AtPt) == 0.

We typically drop the time subscripts when there is not confusion of doing so and just
write
Ed(AP) = 0. (7)

The previous expression asserts that the discounted dividend-reinvested price process is
a local martingale. We will discuss later situations in which this local martingale is in fact
a martingale.

Since A > 0, we have that
d(AP) B dP 4 dA N dA dP
AP P A AP
B dS dA dAdS D

sTatas ts®
_d(AS) N Ddt
CAS ST
Thus, Ed(AP) = 0 is equivalent to
Ed(AS) + ADdt = 0. (8)

Equation (8) is an alternative to equation (7) which makes explicit the dividend process in
pricing the asset. Both equations are the continuos time counterparts to p = E(mx) in
discrete time, which in disguise is also saying that the discounted dividend-reinvested
price process is a local martingale.



An SDF in Continuous Time

Let’s start computing the discounted process for the money market account 8 defined

dp

— = rdt.

B

earlier. Remember that

Thus,
d(Af) = Adp + [LdA.

The pricing equation (8) implies that Ed(AS) = 0, so that

E(AdB + BdA) = 0,

(2)--e(§)

Thus, the drift of the SDF in continuous time determines the equilibrium continuously-
compounded risk-free rate. Remember that r need not be deterministic but just an
adapted process to the filtration of the probability space.

Applying Ito’s lemma now to AS we find that
d(AS) = SdA + AdS + dAdS,

or d(AS) dA dS dAdS

AS At ST ase

Taking expectations both sides, equation (8) implies that
£ ds +Ddt— dt dA\ [dS
A AJ\s )
Property 1. Consider an asset S that follows a diffusion

ds
5= udt + odB.



If the asset pays a dividend yield ¢ = D /S, and there are no arbitrage opportunities, it

dA\ (dS
(u+q—r)dt=-— (T) <?> . (9)

In words, the risk-premium of the asset equals minus the covariance of the SDF and the

must be the case that

asset’s returns.

Back to Consumption

We can always find the stochastic discount factor from the marginal utility of consump-
tion. Under additive utility, the stochastic discount factor takes the form A = e %%’ (¢).
This formulation is useful if we want to understand the link between marginal utility of

consumption and discount factors or risk-neutral probabilities.

Applying Ito’s lemma to this particular A we find

dA—aAd +1 9°A d 2+a dt
ot 294219 T 5
1
=e‘5tu”(c)dc+§e =Sty (c)(dc)? — SeStu'(c)dt,

or

dA c? c*u"(c) cu”(c)dc
T__adt 2 u(c) <c> * u'(c) ¢

For power utility we have that
aA Sdt + 1 +1 dc\’ dc
s Y+ D~ vy

Let’s write
dc
- = ucdt + o.dB,.



Assuming power utility, we have that

dA

1
= (—5 + Ey(y + 1Dao? — y,uc> dt — yo.dB,. (10)

We can now recover the risk-free rate dynamics in terms of consumption growth dynamics
1 £ dA
r=——E{—].
dt A

The model implies that the instantaneous risk-free rate is given by minus the drift of
dA/A,

using

1
r=08+yuc— vy +oc.

The expression is very intuitive and has importantimplications. First, realinterest rates are
high when impatience (9) is high since more impatient investors will require a high interest
rate to save. Furthermore, interest rates are high when expected consumption growth (u,)
is high. Indeed, if agents expect consumption to go up, they need to save less, pushing
bond prices down. Finally, interest rates are high when volatility of future consumption
growth (o,) is low. This phenomenon is usually called precautionary savings. If agents
are less afraid of future consumption growth, they bid bond prices down pushing interest

rates up.

We can also use this consumption-based asset pricing model to understand what is
called the equity premium puzzle. Consider an asset paying a dividend flow Ddt and
following a diffusion

as
? == ‘Llsdt + USdBS

such that (dBs)(dB,;) = pdt. Equations (9) and (10) imply
ps +D/S —r =ypo.os

In this simple asset pricing model with power utility, the risk premium of any risky as-
set is higher when risk aversion (y) is high and/or the covariance of asset returns and

consumption growth is high.



Since |p| < 1, the previous expression implies

Uus+D/S —r

< yo,.
o5 YOoc

In the data, the Sharpe ratio of the market is around 0.5 whereas the standard deviation
of consumption growth is around 0.01. We need a RRA coefficient of at least 50 to explain
the risk-premium of the market! To solve this paradox, researchers have introduced
preferences that generate a more volatile stochastic discount factor, such as recursive
Epstein-Zin preferences or habits.

Generic SDFs in Continuous Time

There are N < K securities whose price process follow a diffusion

ds;
? =[,lidt+0'idB, (11)
i

where g; is a K X 1 vector. Each security pays continuously a dividend yield g;dt.

Define

ds _(ds, ds, dsy\
s \S S, 7Sy
and denote by 6 the N X K matrix whose rows are given by g; defined in (11). We have
that

ds

. udt + odB,

(ds) (ds)’
— || — | =o0'dt.
S S

The N X N matrixaa’ determines the instantaneous covariance of returns. We can verify

implying

dA / -
- =—rdt— (u+q-—1) (o0') lgdB



is an SDF that prices the N original assets correctly. In the expression q denotes the

_ (D1 D, Dy\
q_ 51152;"'151\] .

The Intertemporal CAPM

vector of dividend yields

Let V(W, z) denote the value function that the investor maximizes at each time. The level
of wealth W is of course a state variable. The value function also depends on the risks to
which all the assets are exposed, represented by z. In a more general setup, the marginal
utility of consumption is the same as the marginal utility of wealth, i.e.

u'(c) = Wy.

The marginal value of any dollar must be the same in any use! We can then write the SDF

as
A = e %, (W, 2).

Applying Ito’s lemma to A we find that:

dA WV, W,z2)dW Vg, (W,z
D ar Lonw WD W Ve Wo2) ) (12)
A Vw(W, Z) w Vw(W, Z)
Thus
(BN Py AWAS VW2 () dS
s )Tttt E e T ) \ s )
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