Derivatives Pricing in Continuous Time

Price Processes

Let's start considering a non-dividend paying stock S over the time interval [0,T]. Of course, a stock that does not pay dividends forever is a bubble but we will focus on a finite period of time in which the stock does not pay dividends. The stock price process follows a geometric Brownian of the form

$$\frac{dS}{S} = \mu dt + \sigma dB,$$

and there is a money-market account β that grows at the risk-free rate r such that

$$\frac{d\beta}{\beta} = rdt.$$

Since our objective is to price derivatives written on S with payoffs given by some function of the stock price at time T, we can write the discount factor as

$$\frac{d\Lambda}{\Lambda} = -rdt - \lambda dB.$$

The stochastic part of the discount factor that matters for this application is the one that is perfectly correlated with the stock price process. For the moment, we assume that μ , r, σ and λ are all adapted process to the filtration on which all Brownian motions are adapted.

The pricing equation implies that λ should be the instantaneous Sharpe ratio of the stock price. Indeed,

$$(\mu - r)dt = -\frac{d\Lambda}{\Lambda} \frac{dS}{S} = \lambda \sigma dt,$$

so that

$$\lambda = \frac{\mu - r}{\sigma}.$$

The Risk-Neutral Measure

Girsanov's theorem allows us to create Brownian motions under a different measure by using strictly positive martingales. The risk-neutral measure is a particular measure created by using the process $\mathcal{E}=\Lambda\beta$. The pricing equation implies that \mathcal{E} is a strictly positive local martingale. If \mathcal{E} is actually a martingale, we can create a new measure P* such that

$$\frac{d P^*}{d P} = \mathcal{E}_T.$$

There are many models in which \mathcal{E} is a proper martingale. For example, if r is constant, then it is not hard to show that \mathcal{E} is a martingale. In the following, we assume that \mathcal{E} is a strictly positive martingale.

Girsanov's theorem then implies that

$$B_t^* = B_t - \int_0^t \frac{d\mathcal{E}_s}{\mathcal{E}_s} dB_s$$

is a P*-Brownian motion. In this particular case, we have that

$$\frac{d\mathcal{E}}{\mathcal{E}}dB = \left(\frac{d\Lambda}{\Lambda} + \frac{d\beta}{\beta}\right)dB = -\lambda dt.$$

Thus,

$$dB^* = dB + \lambda dt$$

The dynamics of S under P^* are then given by

$$\frac{dS}{S} = \mu dt + \sigma (dB^* - \lambda dt)$$

$$= (\mu - \lambda \sigma) dt + \sigma dB^*.$$
(1)

Thus, we have that

$$\frac{dS}{S} = rdt + \sigma dB^*.$$

The previous expression implies that the drift of the stock is just the risk-free rate under

 P^* . Consider now another asset V exposed to the same Brownian motion B,

$$\frac{dV}{V} = \mu_V dt + \sigma_V dB. \tag{2}$$

Hence, it must also be the case that

$$\lambda = \frac{\mu - r}{\sigma} = \frac{\mu_V - r}{\sigma_V},$$

and

$$\frac{dV}{V} = rdt + \sigma dB^*. (3)$$

Thus, all assets under P^* earn the same rate of return equal to the risk-free rate. This is why we call the measure P^* the **risk-neutral measure**. In a risk-neutral world, all investors are happy discounting all cash flows at the risk-free rate.

If ΛV is a martingale it must be the case that

$$\lambda_0 V_0 = \mathsf{E}(\Lambda_T V_T).$$

Thus,

$$V_0 = \mathsf{E}\left(\frac{\Lambda_T \beta_T}{\Lambda_0 \beta_0} \frac{\beta_0}{\beta_T} V_T\right) = \mathsf{E}^*\left(e^{-\int_0^T r_S ds} V_T\right).$$

More generally, we must have

$$V_t = \mathsf{E}_t^* \left(e^{-\int_t^T r_S ds} V_T \right). \tag{4}$$

Therefore, we can value any asset by discounting expected cash flows at the risk-free rate of return.

Example 1. The price of a zero-coupon bond paying 1 unit of consumption at time T is just

$$B(T) = \mathsf{E}\bigg(\frac{\Lambda_T}{\Lambda_0}1\bigg) = \mathsf{E}\bigg(\frac{\Lambda_T\beta_T}{\Lambda_0\beta_0}\frac{\beta_T}{\beta_0}\bigg) = \mathsf{E}^*\bigg(e^{-\int_0^T r_S ds}\bigg).$$

Therefore, $e^{-\int_0^T r_s ds}$ acts like a discount factor under the risk-neutral measure. More

generally,

$$B_t(T) = \mathsf{E}_t^* \left(e^{-\int_t^T r_{\mathsf{S}} ds} \right),$$

denotes the time-t price of a zero-coupon bond paying 1 unit of consumption at time T.

Example 2. A futures contract is an obligation to purchase or sell an asset S for a prespecified price namely the futures price at a specific date T in the future. The key feature of futures contracts is that the gains or losses are realized daily. Also, to buy or sell a futures there is no cash outflow. Even though in real markets investors need to deposit a small margin, for the purpose of pricing the futures we can assume that the margin amount is negligible.

Therefore, if we denote by dF the futures gains or losses in a long position from t to t+dt, it must be the case that

$$\mathsf{E}_t(\Lambda_t dF) = 0,$$

since no cash is required to obtain a potential gain or loss of dF during the period. We can then re-write the previous expression as

$$0 = \mathsf{E}_t \left(\frac{\Lambda_t \beta_t}{\Lambda_0 \beta_0} dF \right) = \mathsf{E}_t^* \, dF.$$

Thus, under the risk-neutral measure the futures price process must be a local martingale. For many models, we can actually write that the futures price is a martingale under the risk-neutral measure, implying

$$F_t(T) = \mathsf{E}_t^* S_T$$
.

Even though sometimes it might be hard to show that the futures is a P^* -martingale, we can always compute $E_t^* S_T$ and verify that the futures satisfy the local martingale property. \square

Example 3. The forward price $\varphi(T)$ is the delivery price in a forward contract expiring at time T such that the value of the contract is zero, i.e.,

$$\mathsf{E}^* \, e^{-\int_0^T r_S ds} (S_T - \varphi(T)) = 0.$$

Therefore,

$$\varphi(T) = \frac{\mathsf{E}^* \left(e^{-\int_0^T r_S ds} S_T \right)}{\mathsf{E}^* \left(e^{-\int_0^T r_S ds} \right)} = \frac{\mathsf{Cov}^* \left(e^{-\int_0^T r_S ds}, S_T \right)}{B(T)} + F(T).$$

Therefore, the forward price is equal to the futures price plus the risk-neutral covariance between the risk-neutral discount factor and the underlying asset. Thus, the forward price is equal to the futures price only when this covariance is zero.

The Black-Scholes Model

The Black-Scholes formula to price options is one of the most important accomplishments in finance. A European call option gives its buyer the right but not the obligation to purchase an asset for a pre-determined price K at a future date T. Thus, the buyer of the call option pays K to receive a stock worth S_T only when $S_T > K$.

In their original model, Black and Scholes (1973) assumes that all parameters are constant. This implies that

$$\beta_T = \beta_0 e^{rT}$$
,

and

$$V_t = e^{-rT} \, \mathsf{E}_t^* \, S_T.$$

In the Black-Scholes model, the stock price process under the risk-neutral measure is

$$\frac{dS}{S} = rdt + \sigma dB^*.$$

We can solve for S_t to find

$$S_t = S_0 e^{(r - \frac{1}{2}\sigma^2)t + \sigma B_t^*}.$$

Thus, under the risk-neutral measure $ln(S_t)$ is normally distributed with mean

$$\mathsf{E}\ln(S_t) = \ln(S_0) + \left(r - \frac{1}{2}\sigma^2\right)t,$$

and variance

$$V \ln(S_t) = \sigma^2 T.$$

Example 4. The risk-neutral probability that the stock price S_T is greater than K at time T is

$$\begin{split} \mathsf{P}^*(S_T > K) &= \mathsf{P}^*(\ln(S_T) > \ln(K)) \\ &= \mathsf{P}^* \left(Z > \frac{\ln(K) - \ln(S_0) - \left(r - \frac{1}{2}\sigma^2 \right) T}{\sigma^2 T} \right) \\ &= \mathsf{P}^* \left(Z < \frac{\ln(S/K) + \left(r - \frac{1}{2}\sigma^2 \right) T}{\sigma^2 T} \right), \end{split}$$

where ${\it Z}$ denotes a standard normally distributed random variable. In the Black-Scholes model, we typically write

$$d_2 = \frac{\ln(S/K) + \left(r - \frac{1}{2}\sigma^2\right)T}{\sigma^2T},$$

and $N(d) = P^*(Z < d)$, so that $P^*(S_T > K) = N(d_2)$.

For a given event $A \in \mathcal{F}$, the indicator function $\mathbb{1}_{\{A\}}(\omega)$ is equal to 1 if $\omega \in A$ and 0 otherwise. Thus, $\mathbb{1}_{\{S_T > K\}}$ is equal to 1 whenever $S_T > K$ and zero otherwise. The payoff of a call option can then be defined as

Call Payoff =
$$(S_T - K) \mathbb{1}_{\{S_T > K\}} = S_T \mathbb{1}_{\{S_T > K\}} - K \mathbb{1}_{\{S_T > K\}}$$

The price of a call must then be given by

$$C_0 = \mathsf{E} \frac{\Lambda_T}{\Lambda_0} (S_T - K) \mathbb{1}_{\{S_T > K\}} = \mathsf{E} \frac{\Lambda_T}{\Lambda_0} S_T \mathbb{1}_{\{S_T > K\}} - K \mathsf{E} \frac{\Lambda_T}{\Lambda_0} \mathbb{1}_{\{S_T > K\}}.$$
 (5)

To compute the first expectation in (5), a nice trick is to realize that $\mathcal{E}^S = \Lambda S$ is a strictly positive martingale defining a new measure P^S such that

$$\frac{\mathsf{P}^S}{\mathsf{P}} = \mathcal{E}_T^S.$$

Thus,

$$\mathsf{E}\,\frac{\Lambda_T}{\Lambda_0}S_T\,1\!\!1_{\{S_T>K\}} = S_0\,\mathsf{E}\,\frac{\Lambda_TS_T}{\Lambda_0S_0}\,1\!\!1_{\{S_T>K\}} = S_0\,\mathsf{E}^S\,1\!\!1_{\{S_T>K\}} = S_0\,\mathsf{P}^S(S_T>K).$$

To compute the second expectation in (5) we can just use the risk-neutral measure

$$\mathsf{E} \frac{\Lambda_T}{\Lambda_0} 1\!\!1_{\{S_T > K\}} = \frac{\beta_0}{\beta_T} \, \mathsf{E} \frac{\Lambda_T \beta_T}{\Lambda_0 \beta_0} 1\!\!1_{\{S_T > K\}} = e^{-rT} \, \mathsf{E}^* \, 1\!\!1_{\{S_T > K\}} = e^{-rT} \, \mathsf{P}^* (S_T > K).$$

The price of the call can then be written as

$$C_0 = S_0 P^S(S_T > K) - Ke^{-rT} P^*(S_T > K).$$

To compute $P^{S}(S_{T} > K)$, we know that

$$B_t^S = B_t - \int_0^t \frac{d\mathcal{E}^S}{\mathcal{E}^S} dB = B_t + (\lambda - \sigma)t$$

is a Brownian motion under P^S . Thus,

$$\frac{dS}{S} = (r + \sigma^2)dt + \sigma dB^S.$$

We can follow the steps in Example 4 to conclude that

$$\mathsf{P}^S(S_T > K) = N(d_1),$$

where

$$d_1 = \frac{\ln(S/K) + \left(r + \frac{1}{2}\sigma^2\right)T}{\sigma^2T}.$$

To price a European put option we can proceed in a similar way. Remember that a European put option gives it's buyer the right but not the obligation to sell an asset for a pre-determined price K at a future date T. Therefore, the payoff of the European put at maturity is

Put Payoff =
$$K 1_{\{S_T < k\}} - S_T 1_{\{S_T < k\}}$$
.

The price P_0 of the put today is then given by

$$P_0 = Ke^{-rT} P^*(S_T < K) - S P^S(S_T < K).$$

Thus, $P^*(S_T < K) = 1 - N(d_2) = N(-d_2)$ and $P^S(S_T < K) = 1 - N(d_1) = N(-d_1)$. We can summarize these results in the following property.

Property 1. In the Black-Scholes model, the prices C and P of European call and put options, respectively, are given by

$$C = SN(d_1) - Ke^{-rT}N(d_2),$$

 $P = Ke^{-rT}N(-d_2) - SN(-d_1),$

where

$$d_1 = \frac{\ln(S/K) + \left(r + \frac{1}{2}\sigma^2\right)T}{\sigma^2T},$$

$$d_2 = \frac{\ln(S/K) + \left(r - \frac{1}{2}\sigma^2\right)T}{\sigma^2T},$$

and N(d) denotes the cumulative probability than a standard normal random variable is less than d.

Partial Differential Equations in the Black-Scholes Model

The Black-Scholes formula was originally derived as the solution of a partial differential equation (PDE). It is indeed the case that any asset in the Black-Scholes model must satisfy the same PDE. Consider a derivative V that pays $f(S_T)$ at time T.

If V is a function of S and t^1 , then Ito's lemma implies that

$$\begin{split} dV &= \frac{\partial V}{\partial S} dS + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} (dS)^2 + \frac{\partial V}{\partial t} dt \\ &= \left(rS \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \frac{\partial V}{\partial t} \right) dt + \sigma S \frac{\partial V}{\partial S} dB^*. \end{split}$$

¹More specifically, we assume that $V_t = F(S_t, t)$.

Equation (3) then implies that any derivative written on S must satisfy the following partial differential equation

$$rS\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \frac{\partial V}{\partial t} = rV.$$

It is in theory possible to solve the partial differential equation subject to a terminal value to price any derivative like a European call or put option written on the stock. In practice, it is easier to use a change of measure to find the value of the derivative.

Black, Fischer, and Myron Scholes. 1973. "The Pricing of Options and Corporate Liabilities." *Journal of Political Economy* 81 (3): 637–54.