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Derivatives Pricing in Continuous Time

Price Processes

Let’s start considering a non-dividend paying stock S over the time interval [0, T]. Of
course, a stock that does not pay dividends forever is a bubble but we will focus on a
finite period of time in which the stock does not pay dividends. The stock price process

follows a geometric Brownian of the form
ds
< = udt + odB,

and there is a money-market account f that grows at the risk-free rate r such that

dp

— =rdt.
B
Since our objective is to price derivatives written on S with payoffs given by some function
of the stock price at time T, we can write the discount factor as

A _ dt — AdB
e .

The stochastic part of the discount factor that matters for this application is the one that
is perfectly correlated with the stock price process. For the moment, we assume that
u, r, o and A are all adapted process to the filtration on which all Brownian motions are

adapted.

The pricing equation implies that A should be the instantaneous Sharpe ratio of the stock

price. Indeed,

dt = dAdS—/l dt
(l’l‘ T') - A S = A0dt,

so that




The Risk-Neutral Measure

Girsanov’s theorem allows us to create Brownian motions under a different measure
by using strictly positive martingales. The risk-neutral measure is a particular measure
created by using the process £ = AB. The pricing equation implies that £ is a strictly
positive local martingale. If £ is actually a martingale, we can create a new measure P*
such that
dP*
4P =E&r.
There are many models in which £ is a proper martingale. For example, if r is constant,
then itis not hard to show that € is a martingale. In the following, we assume that £ is a

strictly positive martingale.

Girsanov’s theorem then implies that

. tde,
Bt = Bt —J g_dBS
0 S

is a P*-Brownian motion. In this particular case, we have that

dgdB— dA+dﬁ dB = —Adt
£ LA 3 B '

Thus,
dB* = dB + Adt.

The dynamics of S under P* are then given by

as _ dt + o(dB* — Adt
s —H a( ) )

= (u — Ao)dt + odB".

Thus, we have that

as
< =rdt + odB".

The previous expression implies that the drift of the stock is just the risk-free rate under



P*. Consider now another asset I/ exposed to the same Brownian motion B,

dv

Hence, it must also be the case that

—-Tr —-Tr
1= H _ K ’
o oy
and
av
7 =rdt + odB". (3)

Thus, all assets under P* earn the same rate of return equal to the risk-free rate. This is
why we call the measure P* the risk-neutral measure. In a risk-neutral world, all investors

are happy discounting all cash flows at the risk-free rate.

If AV is a martingale it must be the case that
AoVo = E(A7Vr).

Thus,

ATﬁT IBO ) * —fT‘r ds
V,=E —V-|=E o s,
0 (Aoﬁo Br T (e T)

More generally, we must have
* —fT d
Vt=Et(e s SVT). (4)

Therefore, we can value any asset by discounting expected cash flows at the risk-free rate

of return.

Example 1. The price of a zero-coupon bond paying 1 unit of consumption attime T is

— & _ AT'BT& _ r* —fOTrsds
oy« ()« () i ().

T
Therefore, e_fo 7sds acts like a discount factor under the risk-neutral measure. More

just




generally,
* (T ds
B(T) = E; (e Ji s >,

denotes the time-t price of a zero-coupon bond paying 1 unit of consumption at time
T. O

Example 2. A futures contractis an obligation to purchase or sell an asset S for a pre-
specified price namely the futures price at a specific date T in the future. The key feature
of futures contracts is that the gains or losses are realized daily. Also, to buy or sell a
futures there is no cash outflow. Even though in real markets investors need to deposit
a small margin, for the purpose of pricing the futures we can assume that the margin
amount is negligible.

Therefore, if we denote by dF the futures gains or losses in a long position from t to t + dt,
it must be the case that
Et(AtdF) = 0,

since no cash is required to obtain a potential gain or loss of dF during the period. We

can then re-write the previous expression as

A
0=Et< tﬁtdF)zEZdF.

AoPo

Thus, under the risk-neutral measure the futures price process must be a local martingale.
For many models, we can actually write that the futures price is a martingale under the
risk-neutral measure, implying

F.(T) = E; Sr.

Even though sometimes it might be hard to show that the futures is a P*-martingale, we can

always compute E; Sy and verify that the futures satisfy the local martingale property. []

Example 3. The forward price @ (T) is the delivery price in a forward contract expiring at

time T such that the value of the contract is zero, i.e.,

T
E* e ™) 545(5p — o(T)) = 0.



Therefore,
T T
E* <e_f0 rSdSS’r) Cov" (e_fo ‘r‘st, ST)

o(T) = - (e_ fOTrsds) = BT + F (D).

Therefore, the forward price is equal to the futures price plus the risk-neutral covariance
between the risk-neutral discount factor and the underlying asset. Thus, the forward
price is equal to the futures price only when this covariance is zero. O

The Black-Scholes Model

The Black-Scholes formula to price options is one of the most important accomplish-
ments in finance. A European call option gives its buyer the right but not the obligation to
purchase an asset for a pre-determined price K at a future date T. Thus, the buyer of the
call option pays K to receive a stock worth Sy only when S; > K.

Intheir originalmodel, Black and Scholes (1973) assumes that all parameters are constant.
This implies that

Br = ﬂoerT’

and

I/t = e_rT E; ST'

In the Black-Scholes model, the stock price process under the risk-neutral measure is

ds
< = rdt + odB".

We can solve for S; to find
S¢ = Soe(r_%az)HaB;.

Thus, under the risk-neutral measure ln(S;) is normally distributed with mean

1
En(Sy) = In(Sy) + <r — 502) t,



and variance
VIn(S,) = o?T.

Example 4. The risk-neutral probability that the stock price Sy is greater than K attime T
is
P*(S; > K) = P*(In(S7) > In(K))
_ —(r =152
In(K) — In(Sy) (r S0 )T

=P\ Z>
o2T

In(S/K) + (r = 30%)T

=Pl Z< )
o?T

where Z denotes a standard normally distributed random variable. In the Black-Scholes
model, we typically write

~ In(S/K) + (r — %O’Z)T

, =
02T ’

and N(d) = P*(Z < d), sothat P*(S; > K) = N(d,). O

For a given event A € F, the indicator function 14 (w) is equalto 1ifw € Aand 0
otherwise. Thus, 1¢s, .~y is equal to 1 whenever S¢ > K and zero otherwise. The payoff of
a call option can then be defined as

Call Payoff = (Sp — K) 15,5k = Srlis,>ky — Klis >k

The price of a call must then be given by
T Ar Ar
Co=E—(Sr — K) 5,5y = E—Srlg k) — KE —Lg 5 x5 (5)
Ao Ao Ao

To compute the first expectation in (5), a nice trick is to realize that £5 = AS is a strictly

positive martingale defining a new measure PS such that



Thus,

ArS

T TOT

E—=5rls;>k3 = So E < Lis;>k3 = So E® Y5>y = So PS(ST > K).
Ao AoSo

To compute the second expectation in (5) we can just use the risk-neutral measure

T BO AT:BT - * - *
E A—O]].{ST>K} = E E m]l{ST>K} =e rT E ]l{ST>K} =e rT P (ST > K)

The price of the call can then be written as

CO = SO PS(ST > K) - Ke_TT P*(ST > K)

To compute P3(S; > K), we know that
t ng

BtS=Bt—] FalB=Bt+(A—a)t
0

is a Brownian motion under P>. Thus,

ds
<~ = (r + 6?)dt + odB>.

We can follow the steps in Example 4 to conclude that
PS(Sy > K) = N(dy),

where 1
In(S/K) + (r + EO'Z)T

L=
o?T

To price a European put option we can proceed in a similar way. Remember that a Eu-
ropean put option gives it’s buyer the right but not the obligation to sell an asset for a
pre-determined price K at a future date T. Therefore, the payoff of the European put at
maturity is

Put Payoff = Klig <ky — Srlls <k}



The price P, of the put today is then given by
P, =Ke "TP*(S; < K) — SP5(S; < K).

Thus, P*(S; < K) =1—-N(d,) = N(—d,) and PS(ST <K)=1-N(dy) =N(—d,). We
can summarize these results in the following property.

Property 1. In the Black-Scholes model, the prices C and P of European call and put
options, respectively, are given by

C = SN(dy) — Ke "TN(d,),
P = Ke_rTN(—dz) - SN(—dl),

where
In(S/K) + (r + %O’Z)T
e a?T ’
In(S/K) + (r — %O’Z)T
dz = a?T '

and N(d) denotes the cumulative probability than a standard normal random variable is
lessthan d.

Partial Differential Equations in the Black-Scholes Model

The Black-Scholes formula was originally derived as the solution of a partial differential
equation (PDE). It is indeed the case that any asset in the Black-Scholes model must
satisfy the same PDE. Consider a derivative V that pays f(Sr) attime T.

If V is a function of S and t, then Ito’s lemma implies that

dv = anS+ Lo%V dS)? + avdt
~aS 2652( ) ot

= 50V+1 25262V+6V dt + SanB*
~\"™8s 729 352 T B¢ T

"More specifically, we assume that V;, = F(S, t).



Equation (3) then implies that any derivative written on S must satisfy the following partial

differential equation
Sav 4 1 25262V N av _
s 7297 852 " 9t T

Itis in theory possible to solve the partial differential equation subject to a terminal value

rV.

to price any derivative like a European call or put option written on the stock. In practice,
itis easier to use a change of measure to find the value of the derivative.
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