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Derivatives Pricing in Continuous Time

Price Processes

Let’s start considering a non-dividend paying stock 𝑆 over the time interval [0, 𝑇]. Of

course, a stock that does not pay dividends forever is a bubble but we will focus on a

finite period of time in which the stock does not pay dividends. The stock price process

follows a geometric Brownian of the form

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝐵,

and there is a money-market account 𝛽 that grows at the risk-free rate 𝑟 such that

𝑑𝛽

𝛽
= 𝑟𝑑𝑡.

Since our objective is to price derivatives written on 𝑆with payoffs given by some function

of the stock price at time 𝑇, we can write the discount factor as

𝑑Λ

Λ
= −𝑟𝑑𝑡 − 𝜆𝑑𝐵.

The stochastic part of the discount factor that matters for this application is the one that

is perfectly correlated with the stock price process. For the moment, we assume that

𝜇, 𝑟, 𝜎 and 𝜆 are all adapted process to the filtration on which all Brownianmotions are

adapted.

The pricing equation implies that 𝜆 should be the instantaneous Sharpe ratio of the stock

price. Indeed,

(𝜇 − 𝑟)𝑑𝑡 = −
𝑑Λ

Λ

𝑑𝑆

𝑆
= 𝜆𝜎𝑑𝑡,

so that

𝜆 =
𝜇 − 𝑟

𝜎
.
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The Risk-Neutral Measure

Girsanov’s theorem allows us to create Brownian motions under a different measure

by using strictly positive martingales. The risk-neutral measure is a particular measure

created by using the process ℰ = Λ𝛽. The pricing equation implies that ℰ is a strictly

positive local martingale. If ℰ is actually a martingale, we can create a newmeasure P
∗

such that
𝑑P∗

𝑑P
= ℰ𝑇.

There are manymodels in which ℰ is a proper martingale. For example, if 𝑟 is constant,

then it is not hard to show that ℰ is a martingale. In the following, we assume that ℰ is a

strictly positive martingale.

Girsanov’s theorem then implies that

𝐵∗
𝑡 = 𝐵𝑡 −�

𝑡

0

𝑑ℰ𝑠

ℰ𝑠
𝑑𝐵𝑠

is a P
∗
-Brownianmotion. In this particular case, we have that

𝑑ℰ

ℰ
𝑑𝐵 = �

𝑑Λ

Λ
+
𝑑𝛽

𝛽
�𝑑𝐵 = −𝜆𝑑𝑡.

Thus,

𝑑𝐵∗ = 𝑑𝐵 + 𝜆𝑑𝑡.

The dynamics of 𝑆 under P∗ are then given by

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎(𝑑𝐵∗ − 𝜆𝑑𝑡)

= (𝜇 − 𝜆𝜎)𝑑𝑡 + 𝜎𝑑𝐵∗.

(1)

Thus, we have that
𝑑𝑆

𝑆
= 𝑟𝑑𝑡 + 𝜎𝑑𝐵∗.

The previous expression implies that the drift of the stock is just the risk-free rate under
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P
∗
. Consider now another asset 𝑉 exposed to the same Brownianmotion 𝐵,

𝑑𝑉

𝑉
= 𝜇𝑉𝑑𝑡 + 𝜎𝑉𝑑𝐵. (2)

Hence, it must also be the case that

𝜆 =
𝜇 − 𝑟

𝜎
=
𝜇𝑉 − 𝑟

𝜎𝑉
,

and
𝑑𝑉

𝑉
= 𝑟𝑑𝑡 + 𝜎𝑑𝐵∗. (3)

Thus, all assets under P
∗
earn the same rate of return equal to the risk-free rate. This is

whywecall themeasureP
∗
the risk-neutralmeasure. In a risk-neutral world, all investors

are happy discounting all cash flows at the risk-free rate.

If Λ𝑉 is a martingale it must be the case that

𝜆0𝑉0 = E(Λ𝑇𝑉𝑇).

Thus,

𝑉0 = E�
Λ𝑇𝛽𝑇

Λ0𝛽0

𝛽0

𝛽𝑇
𝑉𝑇� = E

∗ �𝑒−∫
𝑇

0
𝑟𝑠𝑑𝑠𝑉𝑇� .

More generally, wemust have

𝑉𝑡 = E
∗
𝑡 �𝑒

−∫
𝑇

𝑡
𝑟𝑠𝑑𝑠𝑉𝑇� . (4)

Therefore, we can value any asset by discounting expected cash flows at the risk-free rate

of return.

Example 1. The price of a zero-coupon bond paying 1 unit of consumption at time 𝑇 is

just

𝐵(𝑇) = E�
Λ𝑇

Λ0
1� = E�

Λ𝑇𝛽𝑇

Λ0𝛽0

𝛽𝑇

𝛽0
� = E

∗ �𝑒−∫
𝑇

0
𝑟𝑠𝑑𝑠� .

Therefore, 𝑒−∫
𝑇

0
𝑟𝑠𝑑𝑠 acts like a discount factor under the risk-neutral measure. More
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generally,

𝐵𝑡(𝑇) = E
∗
𝑡 �𝑒

−∫
𝑇

𝑡
𝑟𝑠𝑑𝑠� ,

denotes the time-𝑡 price of a zero-coupon bond paying 1 unit of consumption at time

𝑇.

Example 2. A futures contract is an obligation to purchase or sell an asset 𝑆 for a pre-

specified price namely the futures price at a specific date 𝑇 in the future. The key feature

of futures contracts is that the gains or losses are realized daily. Also, to buy or sell a

futures there is no cash outflow. Even though in real markets investors need to deposit

a small margin, for the purpose of pricing the futures we can assume that the margin

amount is negligible.

Therefore, if we denote by 𝑑𝐹 the futures gains or losses in a long position from 𝑡 to 𝑡 + 𝑑𝑡,

it must be the case that

E𝑡(Λ𝑡𝑑𝐹) = 0,

since no cash is required to obtain a potential gain or loss of 𝑑𝐹 during the period. We

can then re-write the previous expression as

0 = E𝑡 �
Λ𝑡𝛽𝑡

Λ0𝛽0
𝑑𝐹� = E

∗
𝑡 𝑑𝐹.

Thus, under the risk-neutralmeasure the futures price processmust be a localmartingale.

For manymodels, we can actually write that the futures price is a martingale under the

risk-neutral measure, implying

𝐹𝑡(𝑇) = E
∗
𝑡 𝑆𝑇.

Even thoughsometimes itmightbehard toshow that the futures is aP
∗
-martingale,wecan

always compute E
∗
𝑡 𝑆𝑇 and verify that the futures satisfy the localmartingale property.

Example 3. The forward price𝜑(𝑇) is the delivery price in a forward contract expiring at

time 𝑇 such that the value of the contract is zero, i.e.,

E
∗ 𝑒−∫

𝑇

0
𝑟𝑠𝑑𝑠(𝑆𝑇 − 𝜑(𝑇)) = 0.
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Therefore,

𝜑(𝑇) =

E
∗ �𝑒−∫

𝑇

0
𝑟𝑠𝑑𝑠𝑆𝑇�

E
∗ �𝑒−∫

𝑇

0
𝑟𝑠𝑑𝑠�

=

Cov
∗ �𝑒−∫

𝑇

0
𝑟𝑠𝑑𝑠, 𝑆𝑇�

𝐵(𝑇)
+ 𝐹(𝑇).

Therefore, the forward price is equal to the futures price plus the risk-neutral covariance

between the risk-neutral discount factor and the underlying asset. Thus, the forward

price is equal to the futures price only when this covariance is zero.

The Black-Scholes Model

The Black-Scholes formula to price options is one of the most important accomplish-

ments in finance. A European call option gives its buyer the right but not the obligation to

purchase an asset for a pre-determined price𝐾 at a future date 𝑇. Thus, the buyer of the

call option pays𝐾 to receive a stock worth 𝑆𝑇 only when 𝑆𝑇 > 𝐾.

In their originalmodel, BlackandScholes (1973)assumes thatall parametersareconstant.

This implies that

𝛽𝑇 = 𝛽0𝑒
𝑟𝑇,

and

𝑉𝑡 = 𝑒−𝑟𝑇 E∗𝑡 𝑆𝑇.

In the Black-Scholes model, the stock price process under the risk-neutral measure is

𝑑𝑆

𝑆
= 𝑟𝑑𝑡 + 𝜎𝑑𝐵∗.

We can solve for 𝑆𝑡 to find

𝑆𝑡 = 𝑆0𝑒
(𝑟−

1

2
𝜎2)𝑡+𝜎𝐵∗𝑡 .

Thus, under the risk-neutral measure ln(𝑆𝑡) is normally distributed with mean

E ln(𝑆𝑡) = ln(𝑆0) + �𝑟 −
1

2
𝜎2� 𝑡,
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and variance

V ln(𝑆𝑡) = 𝜎2𝑇.

Example 4. The risk-neutral probability that the stock price 𝑆𝑇 is greater than𝐾 at time 𝑇

is

P
∗(𝑆𝑇 > 𝐾) = P

∗(ln(𝑆𝑇) > ln(𝐾))

= P
∗ �𝑍 >

ln(𝐾) − ln(𝑆0) − �𝑟 −
1

2
𝜎2� 𝑇

𝜎2𝑇
�

= P
∗ �𝑍 <

ln(𝑆/𝐾) + �𝑟 −
1

2
𝜎2� 𝑇

𝜎2𝑇
� ,

where 𝑍 denotes a standard normally distributed random variable. In the Black-Scholes

model, we typically write

𝑑2 =
ln(𝑆/𝐾) + �𝑟 −

1

2
𝜎2� 𝑇

𝜎2𝑇
,

and𝑁(𝑑) = P
∗(𝑍 < 𝑑), so that P∗(𝑆𝑇 > 𝐾) = 𝑁(𝑑2).

For a given event 𝐴 ∈ ℱ, the indicator function 1l{𝐴}(𝜔) is equal to 1 if 𝜔 ∈ 𝐴 and 0

otherwise. Thus, 1l{𝑆𝑇>𝐾} is equal to 1 whenever 𝑆𝑇 > 𝐾 and zero otherwise. The payoff of

a call option can then be defined as

Call Payoff = (𝑆𝑇 − 𝐾)1l{𝑆𝑇>𝐾} = 𝑆𝑇1l{𝑆𝑇>𝐾} − 𝐾1l{𝑆𝑇>𝐾}.

The price of a call must then be given by

𝐶0 = E
Λ𝑇

Λ0
(𝑆𝑇 − 𝐾)1l{𝑆𝑇>𝐾} = E

Λ𝑇

Λ0
𝑆𝑇1l{𝑆𝑇>𝐾} − 𝐾 E

Λ𝑇

Λ0
1l{𝑆𝑇>𝐾}. (5)

To compute the first expectation in (5), a nice trick is to realize that ℰ𝑆 = Λ𝑆 is a strictly

positive martingale defining a newmeasure P
𝑆
such that

P
𝑆

P
= ℰ𝑆𝑇 .
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Thus,

E
Λ𝑇

Λ0
𝑆𝑇1l{𝑆𝑇>𝐾} = 𝑆0 E

Λ𝑇𝑆𝑇

Λ0𝑆0
1l{𝑆𝑇>𝐾} = 𝑆0 E

𝑆 1l{𝑆𝑇>𝐾} = 𝑆0 P
𝑆(𝑆𝑇 > 𝐾).

To compute the second expectation in (5) we can just use the risk-neutral measure

E
Λ𝑇

Λ0
1l{𝑆𝑇>𝐾} =

𝛽0

𝛽𝑇
E
Λ𝑇𝛽𝑇

Λ0𝛽0
1l{𝑆𝑇>𝐾} = 𝑒−𝑟𝑇 E∗ 1l{𝑆𝑇>𝐾} = 𝑒−𝑟𝑇 P∗(𝑆𝑇 > 𝐾).

The price of the call can then be written as

𝐶0 = 𝑆0 P
𝑆(𝑆𝑇 > 𝐾) − 𝐾𝑒−𝑟𝑇 P∗(𝑆𝑇 > 𝐾).

To compute P
𝑆(𝑆𝑇 > 𝐾), we know that

𝐵𝑆
𝑡 = 𝐵𝑡 −�

𝑡

0

𝑑ℰ𝑆

ℰ𝑆
𝑑𝐵 = 𝐵𝑡 + (𝜆 − 𝜎)𝑡

is a Brownianmotion under P
𝑆
. Thus,

𝑑𝑆

𝑆
= (𝑟 + 𝜎2)𝑑𝑡 + 𝜎𝑑𝐵𝑆.

We can follow the steps in Example 4 to conclude that

P
𝑆(𝑆𝑇 > 𝐾) = 𝑁(𝑑1),

where

𝑑1 =
ln(𝑆/𝐾) + �𝑟 +

1

2
𝜎2� 𝑇

𝜎2𝑇
.

To price a European put option we can proceed in a similar way. Remember that a Eu-

ropean put option gives it’s buyer the right but not the obligation to sell an asset for a

pre-determined price𝐾 at a future date 𝑇. Therefore, the payoff of the European put at

maturity is

Put Payoff = 𝐾1l{𝑆𝑇<𝑘} − 𝑆𝑇1l{𝑆𝑇<𝑘}.
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The price 𝑃0 of the put today is then given by

𝑃0 = 𝐾𝑒−𝑟𝑇 P∗(𝑆𝑇 < 𝐾) − 𝑆P𝑆(𝑆𝑇 < 𝐾).

Thus, P
∗(𝑆𝑇 < 𝐾) = 1−𝑁(𝑑2) = 𝑁(−𝑑2) and P

𝑆(𝑆𝑇 < 𝐾) = 1−𝑁(𝑑1) = 𝑁(−𝑑1). We

can summarize these results in the following property.

Property 1. In the Black-Scholes model, the prices 𝐶 and 𝑃 of European call and put

options, respectively, are given by

𝐶 = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2),

𝑃 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆𝑁(−𝑑1),

where

𝑑1 =
ln(𝑆/𝐾) + �𝑟 +

1

2
𝜎2� 𝑇

𝜎2𝑇
,

𝑑2 =
ln(𝑆/𝐾) + �𝑟 −

1

2
𝜎2� 𝑇

𝜎2𝑇
,

and𝑁(𝑑) denotes the cumulative probability than a standard normal random variable is

less than 𝑑.

Partial Differential Equations in the Black-Scholes Model

The Black-Scholes formula was originally derived as the solution of a partial differential

equation (PDE). It is indeed the case that any asset in the Black-Scholes model must

satisfy the same PDE. Consider a derivative 𝑉 that pays 𝑓(𝑆𝑇) at time 𝑇.

If 𝑉 is a function of 𝑆 and 𝑡1, then Ito’s lemma implies that

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

1

2

𝜕2𝑉

𝜕𝑆2
(𝑑𝑆)2 +

𝜕𝑉

𝜕𝑡
𝑑𝑡

= �𝑟𝑆
𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+
𝜕𝑉

𝜕𝑡
�𝑑𝑡 + 𝜎𝑆

𝜕𝑉

𝜕𝑆
𝑑𝐵∗.

1More specifically, we assume that 𝑉𝑡 = 𝐹(𝑆𝑡, 𝑡).
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Equation (3) then implies that any derivative written on 𝑆must satisfy the following partial

differential equation

𝑟𝑆
𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+
𝜕𝑉

𝜕𝑡
= 𝑟𝑉.

It is in theory possible to solve the partial differential equation subject to a terminal value

to price any derivative like a European call or put option written on the stock. In practice,

it is easier to use a change of measure to find the value of the derivative.
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