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Consumption Based Asset Pricing

Introduction

Most of modern asset pricing can be cast in terms of the stochastic discount factor. The
idea is to find the price p; at time t of a payoff x,,; paid attime t + 1. The payoff willin

general be random, and therefore unknown at time t.
Forexample, if you purchase a stock at time t your payoff attime t + 1 will be the price p; 41

at which you can sell the stock plus possibly a dividend d;; 1, Or X; 41 = Pryq + dps1-

Example 1. Consider a stock that currently trades for 7. The table below shows the

dividend and price expected next period for different scenarios.

Probability Dividend Price Payoff

Boom 0.3 1.0 10 11.0
Normal 0.5 0.8 7 7.8
Recession 0.2 0.7 4 4.7

The payoff of purchasing the stock today is therefore a random variable defined in some
finite probability space (£}, P). Note that the expected payoff is 8.14, which implies an
expected return of 16.29%.

The big question in finance is then how to find the price p; of the asset at time t. In
Example 1, the payoffs of the stock are generic and could have been the payoffs of any
type of asset. Thus, the asset pricing theory we will develop in these notes applies not
only to stocks, but also to bonds and derivatives.

The notes below follow closely Chapter 1 in Cochrane (2009).



Pricing Assets

Property 1. The price of an asset that pays x;,, attime t + 1 is given by

Pe = Ec(Miy1Xe41), (1)
where ,( )
U (Cry1

=————, 2

Mpyq 0 (o) (2)

is called the stochastic discount factor or pricing kernel.

A simple way to model the tradeoff between consuming today versus tomorrow is to
write
U(ce cev1) = ulce) + 6 Ee[uler+1)], (3)

where E;[-] denotes the expectation conditional on the information available at time t,
u(+) is anincreasing and concave function of consumption, and § < 1is a discounting

factor.

In the expression above, U(c;, ¢¢41) is the value function of consuming ¢, today and ¢, 1
tomorrow. The investor must decide then how much to consume today, how much to
save, and how to invest the savings among different assets. We assume that the investor
has already arranged her investments so that she can consume optimally at time ¢t and
t + 1. Thus, the investor has already decided how to invest in all assets available to her.

Consider now the case in which the investor deviates from her optimal investment rule
and decides to purchase ¢ additional shares of an asset that currently trades for p;. Her
consumption at time t drops to ¢; — {p; since she needs the money to purchase the
additional shares, whereas her consumption at time t + 1 changes to ¢y, + {x¢41 Since
she will receive an additional payoff from the asset she just purchased.

Given the original levels of consumption ¢; and c¢;,1, the new utility can be seen as a

function of &,
U(§) = u(ce — &pe) + S Eefu(cesr + Exeyr)]-



We can now try to maximize the previous function and find the optimal humber of shares
to purchase of the asset. The first-order condition (FOC) for the optimal & must satisfy

U'(§) = —peu'(cr — $pe) + S Eelxpyqu'(Copq + Exe41)] = 0.

However, if the original levels of consumption ¢; and ¢, are already optimal, then we
know that ¢ = 0 is indeed the optimum, implying that

—peu'(cr) + O Ee[xrpqu’(cr41)] = 0,

or

u'(Cri1) l ()

=E. |6
Pt tl w () Xt+1

Equation (4) is the fundamental asset pricing formula. Intuitively, the price of an asset is
high if the asset pays well when marginal utility is high, that is, when consumption is low.
An asset that pays well when consumption is high and not much when consumption is

low is not attractive for a risk-averse investor, carrying a low price.

The term .
U (Cre1)
u'(ct)

is called the stochastic discount factor (SDF) or pricing kernel. The stochastic discount

Meyy =6

factor captures all the information needed to price assets given their payoffs. We will see
later that we can extend the formula to price multi-period cash flows both in discrete and
continuous time.

To simplify notation, we will typically write the pricing equation as
p = E(mx), (5)

where is understood that p denotes the price today of a payoff x paid next period.

If x is a random variable defined on a finite probability space (£, P), the pricing equation
can be written as

p=) P@)m(w)r(®), ©

wEQ



where w denotes a state of the world, P(w) is the probability of the outcome w occurring,
and x(w) is the payoff if w happens.

Example 2. Consider an investor with a power utility function

cl-v

u(c) = 1=y

The stochastic discount factor is then given by

-y
5 Ct+1
Meyq = o .
t

The investor’s current consumption is ¢; = 6.5, and is considering investing in two assets
X and Y. The table below presents the probabilities of different scenarios, along with the

future consumption and payoffs of the assets.

Probability Consumption Payoff X PayoffY

Boom 0.3 9.0 9.8 6.0
Normal 0.5 6.7 8.3 5.0
Recession 0.2 5.4 6.5 7.1

Ify = 4and é = 0.95, we can compute the stochastic discount factor (SDF) for each
scenario as

Probability SDF

Boom 0.3 0.258
Normal 0.5 0.842
Recession 0.2 1.994

Therefore, we can use equation (6) to compute the prices of X and Y. We find that p(x) =
6.85 and p(y) = 5.4, respectively. The expected return of each asset is equal to the
expected payoff divided by its price minus one. Thus, E(r*) = 22.57% and E(rY) =
5.91%.



So far we have been silent about the currency used to price assets and quantify payoffs. It
is clear, however, that our derivation of the fundamental pricing equation (4) used units of
real consumption to quantify prices and payoffs. The stochastic discount factor defined

in (2) is therefore a real discount factor.

If the Euler equation holds in real terms (consumption), does it also hold in nominalterms
(dollars)? The answer is yes, and we can define a nominal discount factor that works with
different currencies.

Let p; = p;/I; and x¢y1 = x{,1/¢41 where [I; denotes the price level and we use
asterisks to denote nominal quantities. Then,

p—;=E m Xt+1

The previous expression implies that
p: = E; (m§+1x;+1)'

1 . . .
where m;, ; = mt+1n—t. We obtain the same equation as before but now expressed in
t+1

nominal terms. In the analysis, m;,; plays the role of a nominal discount factor.

Prices and Returns

We will use
Xt+1

Rey1 =
t

to denote the gross rate of return of investing in the stock. For example, if an investment

of $100 generates $105, the gross returnis R = 1.05, whereas the net returnisr = 5%.

We can divide (1) by p on both sides to get

1 = E(mR). (7)



Therefore, for any security i we always have

E(mRY) = 1. (8)

A risk-free asset pays next period x = 1 no matter what, so that its return R/ is constant.

This implies that E(mR/) = 1, or
1

The stochastic discount factor has all the information to recover the behavior of interest

Rf

rates in the economy.

Example 3. Using the data of Example 2, we find that E(m) = 0.8972. Therefore,

RS

= 0897z~ ii6

or a net return of 11.46% per period.

A zero-cost portfolio involves buying asset i and shorting asset j, generating a zero-cost
return R¢ = R' — RJ. Equation (8) implies that

E(mR®) =0

for any zero-cost portfolio. The price of a zero-cost portfolio is of course zero, since it
involves no cash outflow to create it. The payoffs, however, need not be equal to zero as
they are determined by R! — RJ. Since there is no price to pay initially, at least in theory,
this zero-cost return can be amplified arbitrarily.

Compensation for Time and Risk

The pricing of risky cash flows should incorporate two dimensions. On the one hand,
cash flows paid in the future should be discounted to account for the time value of money.
On the other hand, riskier payoffs should be generate lower prices.



To analyze these issues, we can again start from (1)

p = E(mx) = E(m) E(x) + Cov(m, x)
E(x) (9)
= RF + Cov(m, x).

We can see in the previous expression that the first term represents the time value of
money. Expected cash flows should be discounted to account for the time-value of money.
The second term in the expression is a risk adjustment. Thus, the price of the asset is
high when R’ is low and/or the covariance with the stochastic discount factor is high.

We can use returns instead of prices to write (1) for asset i as
1 = E(mR") = E(m) E(RY) + Cov(m,RY).
Dividing the previous expression by E(m), we find that

Cov(R!,m)

E(R) —R = Eom)

= BimAm, (10)
Cov(R}, m) V(m)

V) and 4,, = _E(m) <0.

where f; , =

Equation (10) defines a typical beta pricing model. Here, the source of systematic risk
is exposure to the discount factor. The beta in equation (10) captures how sensitive the
security is to the stochastic discount factor, and is specific to the security. That’s why it’s
subscript depends on both i and m.

The lambda in equation (10) is the price of risk of the discount factor. Note that in this
case we have that A < 0. This is because an asset with a high beta pays well in bad times,
that is, when marginal utility is high. Therefore, agents like that asset pushing its price up,
generating a lower expected return. To achieve lower expected returns when beta is high
and higher expected returns when beta is low, the price of risk has to be negative.

Cov(R%, u'(cry1)) V(u'(ct41))

and A, = —————.
. ) V(u’(ctﬂ))‘ . " E(u'(ce+1)) )
beta pricing model defined by (10) only the marginal utility of future consumption matters

Equation (2) implies that 5; ,,, = Thus, inthe



to price assets. This is a simplified version of the consumption CAPM of Breeden (1979)
and Lucas (1978).

Multi-Period Asset Pricing

[ee]
Consider now a stream of consumption {C”f}j—o' We can extend the utility function

defined earlier the following way:

V= EtZﬁju(CHj)- (11)
=0

Note that we can also write (11) as
Vo= u(e) + BE ) Bulcerns)
j=0

=u(cy) + BE:Eryq Z ﬁju(ct+1+j)
j=0

= u(cy) + BEt Vit
Equation (12) is the corresponding Bellman equation for equation (11).

Now consider now a stream of dividends {DH]-};o:l. The same perturbation analysis can
'(c t+])
pt_EtZﬁ /( ) (13)

Therefore, the corresponding stochastic discount factor to price a dividend paid at time
t+jis:

be used to show that

U (Ceyj)
Mmeyi = f/—————.
. b u'(cy)

We can use (13) to price any asset with cash flows paid at time T > 1. For example,
consider a real discount bond expiring with time-to-maturity time T and face value 1 unit



of consumption. The price of the bond is given by

By = E;(Mgy1).

Similarly, the price of a nominal discount bond expiring with time-to-maturity time T and

face value $1is

) I, .
By = E; (mt+T—l—[ T) = E;(Miyr)-
t+

Finally, the price of a call option with strike K and maturity T is given by

¢t = Ee(miyr(Sear — K)+)-

In conclusion, the stochastic discount factor framework is universal and allows for the
pricing of all securities. We will see later that the only requirement for the existence of a
stochastic discount factor is the absence of arbitrage opportunities.
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