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Consumption Based Asset Pricing

Introduction

Most of modern asset pricing can be cast in terms of the stochastic discount factor. The

idea is to find the price 𝑝𝑡 at time 𝑡 of a payoff 𝑥𝑡+1 paid at time 𝑡 + 1. The payoff will in

general be random, and therefore unknown at time 𝑡.

For example, if youpurchase a stock at time 𝑡 your payoffat time 𝑡+1will be the price𝑝𝑡+1

at which you can sell the stock plus possibly a dividend 𝑑𝑡+1, or 𝑥𝑡+1 = 𝑝𝑡+1 + 𝑑𝑡+1.

Example 1. Consider a stock that currently trades for 7. The table below shows the

dividend and price expected next period for different scenarios.

Probability Dividend Price Payoff

Boom 0.3 1.0 10 11.0

Normal 0.5 0.8 7 7.8

Recession 0.2 0.7 4 4.7

The payoff of purchasing the stock today is therefore a random variable defined in some

finite probability space (Ω,P). Note that the expected payoff is 8.14, which implies an

expected return of 16.29%.

The big question in finance is then how to find the price 𝑝𝑡 of the asset at time 𝑡. In

Example 1, the payoffs of the stock are generic and could have been the payoffs of any

type of asset. Thus, the asset pricing theory we will develop in these notes applies not

only to stocks, but also to bonds and derivatives.

The notes below follow closely Chapter 1 in Cochrane (2009).
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Pricing Assets

Property 1. The price of an asset that pays 𝑥𝑡+1 at time 𝑡 + 1 is given by

𝑝𝑡 = E𝑡(𝑚𝑡+1𝑥𝑡+1), (1)

where

𝑚𝑡+1 = 𝛿
𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
, (2)

is called the stochastic discount factor or pricing kernel.

A simple way to model the tradeoff between consuming today versus tomorrow is to

write

𝑈(𝑐𝑡, 𝑐𝑡+1) = 𝑢(𝑐𝑡) + 𝛿 E𝑡[𝑢(𝑐𝑡+1)], (3)

where E𝑡[⋅] denotes the expectation conditional on the information available at time 𝑡,

𝑢(⋅) is an increasing and concave function of consumption, and 𝛿 < 1 is a discounting

factor.

In the expression above,𝑈(𝑐𝑡, 𝑐𝑡+1) is the value function of consuming 𝑐𝑡 today and 𝑐𝑡+1

tomorrow. The investor must decide then howmuch to consume today, howmuch to

save, and how to invest the savings among different assets. We assume that the investor

has already arranged her investments so that she can consume optimally at time 𝑡 and

𝑡 + 1. Thus, the investor has already decided how to invest in all assets available to her.

Consider now the case in which the investor deviates from her optimal investment rule

and decides to purchase 𝜉 additional shares of an asset that currently trades for 𝑝𝑡. Her

consumption at time 𝑡 drops to 𝑐𝑡 − 𝜉𝑝𝑡 since she needs the money to purchase the

additional shares, whereas her consumption at time 𝑡 + 1 changes to 𝑐𝑡+1 + 𝜉𝑥𝑡+1 since

she will receive an additional payoff from the asset she just purchased.

Given the original levels of consumption 𝑐𝑡 and 𝑐𝑡+1, the new utility can be seen as a

function of 𝜉,

𝑈(𝜉) = 𝑢(𝑐𝑡 − 𝜉𝑝𝑡) + 𝛿 E𝑡[𝑢(𝑐𝑡+1 + 𝜉𝑥𝑡+1)].
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We can now try to maximize the previous function and find the optimal number of shares

to purchase of the asset. The first-order condition (FOC) for the optimal 𝜉must satisfy

𝑈′(𝜉) = −𝑝𝑡𝑢
′(𝑐𝑡 − 𝜉𝑝𝑡) + 𝛿 E𝑡[𝑥𝑡+1𝑢

′(𝑐𝑡+1 + 𝜉𝑥𝑡+1)] = 0.

However, if the original levels of consumption 𝑐𝑡 and 𝑐𝑡+1 are already optimal, then we

know that 𝜉 = 0 is indeed the optimum, implying that

−𝑝𝑡𝑢
′(𝑐𝑡) + 𝛿 E𝑡[𝑥𝑡+1𝑢

′(𝑐𝑡+1)] = 0,

or

𝑝𝑡 = E𝑡 �𝛿
𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
𝑥𝑡+1� . (4)

Equation (4) is the fundamental asset pricing formula. Intuitively, the price of an asset is

high if the asset pays well whenmarginal utility is high, that is, when consumption is low.

An asset that pays well when consumption is high and not much when consumption is

low is not attractive for a risk-averse investor, carrying a low price.

The term

𝑚𝑡+1 = 𝛿
𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)

is called the stochastic discount factor (SDF) or pricing kernel. The stochastic discount

factor captures all the information needed to price assets given their payoffs. We will see

later that we can extend the formula to price multi-period cash flows both in discrete and

continuous time.

To simplify notation, we will typically write the pricing equation as

𝑝 = E(𝑚𝑥), (5)

where is understood that 𝑝 denotes the price today of a payoff 𝑥 paid next period.

If 𝑥 is a random variable defined on a finite probability space (Ω,P), the pricing equation

can be written as

𝑝 = �

𝑤∈Ω

P(𝜔)𝑚(𝜔)𝑥(𝜔), (6)
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where𝜔 denotes a state of the world, P(𝜔) is the probability of the outcome𝜔 occurring,

and 𝑥(𝜔) is the payoff if𝜔 happens.

Example 2. Consider an investor with a power utility function

𝑢(𝑐) =
𝑐1−𝛾

1 − 𝛾
.

The stochastic discount factor is then given by

𝑚𝑡+1 = 𝛿�
𝑐𝑡+1

𝑐𝑡
�

−𝛾

.

The investor’s current consumption is 𝑐𝑡 = 6.5, and is considering investing in two assets

𝑋 and 𝑌. The table below presents the probabilities of different scenarios, along with the

future consumption and payoffs of the assets.

Probability Consumption Payoff X Payoff Y

Boom 0.3 9.0 9.8 6.0

Normal 0.5 6.7 8.3 5.0

Recession 0.2 5.4 6.5 7.1

If 𝛾 = 4 and 𝛿 = 0.95, we can compute the stochastic discount factor (SDF) for each

scenario as

Probability SDF

Boom 0.3 0.258

Normal 0.5 0.842

Recession 0.2 1.994

Therefore, we can use equation (6) to compute the prices of 𝑋 and 𝑌. We find that 𝑝(𝑥) =

6.85 and 𝑝(𝑦) = 5.4, respectively. The expected return of each asset is equal to the

expected payoff divided by its price minus one. Thus, E(𝑟𝑥) = 22.57% and E(𝑟𝑦) =

5.91%.
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So far we have been silent about the currency used to price assets and quantify payoffs. It

is clear, however, that our derivation of the fundamental pricing equation (4) used units of

real consumption to quantify prices and payoffs. The stochastic discount factor defined

in (2) is therefore a real discount factor.

If the Euler equation holds in real terms (consumption), does it also hold in nominal terms

(dollars)? The answer is yes, and we can define a nominal discount factor that works with

different currencies.

Let 𝑝𝑡 = 𝑝∗𝑡/Π𝑡 and 𝑥𝑡+1 = 𝑥∗𝑡+1/Π𝑡+1 where Π𝑡 denotes the price level and we use

asterisks to denote nominal quantities. Then,

𝑝∗𝑡

Π𝑡
= E𝑡 �𝑚𝑡+1

𝑥∗𝑡+1

Π𝑡+1
� .

The previous expression implies that

𝑝∗𝑡 = E𝑡 �𝑚
∗
𝑡+1𝑥

∗
𝑡+1� ,

where𝑚∗
𝑡+1 = 𝑚𝑡+1

Π𝑡

Π𝑡+1
. We obtain the same equation as before but now expressed in

nominal terms. In the analysis,𝑚∗
𝑡+1 plays the role of a nominal discount factor.

Prices and Returns

Wewill use

𝑅𝑡+1 =
𝑥𝑡+1

𝑝𝑡

to denote the gross rate of return of investing in the stock. For example, if an investment

of $100 generates $105, the gross return is𝑅 = 1.05, whereas the net return is 𝑟 = 5%.

We can divide (1) by 𝑝 on both sides to get

1 = E(𝑚𝑅). (7)
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Therefore, for any security 𝑖we always have

E(𝑚𝑅𝑖) = 1. (8)

A risk-free asset pays next period 𝑥 = 1 nomatter what, so that its return 𝑅𝑓 is constant.

This implies that E(𝑚𝑅𝑓) = 1, or

𝑅𝑓 =
1

E(𝑚)
.

The stochastic discount factor has all the information to recover the behavior of interest

rates in the economy.

Example 3. Using the data of Example 2, we find that E(𝑚) = 0.8972. Therefore,

𝑅𝑓 =
1

0.8972
= 1.1146,

or a net return of 11.46% per period.

A zero-cost portfolio involves buying asset 𝑖 and shorting asset 𝑗, generating a zero-cost

return 𝑅𝑒 = 𝑅𝑖 − 𝑅𝑗. Equation (8) implies that

E(𝑚𝑅𝑒) = 0

for any zero-cost portfolio. The price of a zero-cost portfolio is of course zero, since it

involves no cash outflow to create it. The payoffs, however, need not be equal to zero as

they are determined by 𝑅𝑖 − 𝑅𝑗. Since there is no price to pay initially, at least in theory,

this zero-cost return can be amplified arbitrarily.

Compensation for Time and Risk

The pricing of risky cash flows should incorporate two dimensions. On the one hand,

cash flows paid in the future should be discounted to account for the time value ofmoney.

On the other hand, riskier payoffs should be generate lower prices.
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To analyze these issues, we can again start from (1)

𝑝 = E(𝑚𝑥) = E(𝑚) E(𝑥) + Cov(𝑚, 𝑥)

=
E(𝑥)

𝑅𝑓
+ Cov(𝑚, 𝑥).

(9)

We can see in the previous expression that the first term represents the time value of

money. Expectedcashflowsshouldbediscounted to account for the time-valueofmoney.

The second term in the expression is a risk adjustment. Thus, the price of the asset is

high when 𝑅𝑓 is low and/or the covariance with the stochastic discount factor is high.

We can use returns instead of prices to write (1) for asset 𝑖 as

1 = E(𝑚𝑅𝑖) = E(𝑚) E(𝑅𝑖) + Cov(𝑚, 𝑅𝑖).

Dividing the previous expression by E(𝑚), we find that

E(𝑅𝑖) − 𝑅𝑓 = −
Cov(𝑅𝑖, 𝑚)

E(𝑚)
= 𝛽𝑖,𝑚𝜆𝑚, (10)

where 𝛽𝑖,𝑚 =
Cov(𝑅𝑖, 𝑚)

V(𝑚)
and 𝜆𝑚 = −

V(𝑚)

E(𝑚)
< 0.

Equation (10) defines a typical beta pricing model. Here, the source of systematic risk

is exposure to the discount factor. The beta in equation (10) captures how sensitive the

security is to the stochastic discount factor, and is specific to the security. That’s why it’s

subscript depends on both 𝑖 and𝑚.

The lambda in equation (10) is the price of risk of the discount factor. Note that in this

case we have that 𝜆 < 0. This is because an asset with a high beta pays well in bad times,

that is, whenmarginal utility is high. Therefore, agents like that asset pushing its price up,

generating a lower expected return. To achieve lower expected returns when beta is high

and higher expected returns when beta is low, the price of risk has to be negative.

Equation (2) implies that 𝛽𝑖,𝑚 =
Cov(𝑅𝑖, 𝑢′(𝑐𝑡+1))

V(𝑢′(𝑐𝑡+1))
and 𝜆𝑚 = −

V(𝑢′(𝑐𝑡+1))

E(𝑢′(𝑐𝑡+1))
. Thus, in the

beta pricingmodel defined by (10) only themarginal utility of future consumptionmatters

7



to price assets. This is a simplified version of the consumption CAPM of Breeden (1979)

and Lucas (1978).

Multi-Period Asset Pricing

Consider now a stream of consumption �𝑐𝑡+𝑗�
∞

𝑗=0
. We can extend the utility function

defined earlier the following way:

𝑉𝑡 = E𝑡

∞

�

𝑗=0

𝛽𝑗𝑢(𝑐𝑡+𝑗). (11)

Note that we can also write (11) as

𝑉𝑡 = 𝑢(𝑐𝑡) + 𝛽 E𝑡

∞

�

𝑗=0

𝛽𝑗𝑢(𝑐𝑡+1+𝑗)

= 𝑢(𝑐𝑡) + 𝛽 E𝑡 E𝑡+1

∞

�

𝑗=0

𝛽𝑗𝑢(𝑐𝑡+1+𝑗)

= 𝑢(𝑐𝑡) + 𝛽 E𝑡 𝑉𝑡+1.

(12)

Equation (12) is the corresponding Bellman equation for equation (11).

Now consider now a stream of dividends �𝐷𝑡+𝑗�
∞

𝑗=1
. The same perturbation analysis can

be used to show that

𝑝𝑡 = E𝑡

∞

�

𝑗=1

𝛽𝑗
𝑢′(𝑐𝑡+𝑗)

𝑢′(𝑐𝑡)
𝐷𝑡+𝑗. (13)

Therefore, the corresponding stochastic discount factor to price a dividend paid at time

𝑡 + 𝑗 is:

𝑚𝑡+𝑗 = 𝛽𝑗
𝑢′(𝑐𝑡+𝑗)

𝑢′(𝑐𝑡)
.

We can use (13) to price any asset with cash flows paid at time 𝑇 > 1. For example,

consider a real discount bond expiring with time-to-maturity time 𝑇 and face value 1 unit
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of consumption. The price of the bond is given by

𝐵𝑡 = E𝑡(𝑚𝑡+𝑇).

Similarly, the price of a nominal discount bond expiring with time-to-maturity time 𝑇 and

face value $1 is

𝐵∗𝑡 = E𝑡 �𝑚𝑡+𝑇

Π𝑡

Π𝑡+𝑇
� = E𝑡(𝑚

∗
𝑡+𝑇).

Finally, the price of a call option with strike𝐾 andmaturity 𝑇 is given by

𝑐𝑡 = E𝑡(𝑚
∗
𝑡+𝑇(𝑆𝑡+𝑇 − 𝐾)+).

In conclusion, the stochastic discount factor framework is universal and allows for the

pricing of all securities. We will see later that the only requirement for the existence of a

stochastic discount factor is the absence of arbitrage opportunities.
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