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Introduction

The Black-Scholes model assumes assume that stock prices follow a Geometric Brownian
with a constant drift. The model can be modified to account for a constant dividend yield. The

risk-neutral dynamics for the stock price in this case are given by

ds .
<= (r — q)dt + odBg,
where | use g to denote the dividend yield paid by the stock. The futures price in this case is
just
F(T) = E*S; = Ser—9)T,

Ifr > q,thefutures price will always be anincreasing function of T, whereas ifr < g thefunction
will be decreasing. Even though for stocks this assumption could be a good approximation of
what we observe in practice, for commodities we typically see the slope of the term-structure

of futures prices to change sign over time.

One explanation for a time-varying slope in the term-structure of future prices is that the implicit
dividend that accrues to the owner of the physical commodity might vary over time. We call
this implicit dividend the convenience yield of the commodity. For many commodities, it
represent the fact that the commodity can be put to use in productive activities and therefore is

valuable to have it in storage, just in case.

A simple way to introduce time-variation in the convenience yield is to assume that it follows
a mean-reverting process. If the convenience yield of the commodity is too high, then high
cost producers will start extracting the commodity increasing supply and reducing the value of
physically owning the commodity. On the contrary, if the convenience yield is too low, supple de-
creases and therefore the value of owning the physical commaodity increases. The convenience
yield is therefore an implicit dividend net of storage costs.



A simple model that captures these ideas was first introduced by Gibson and Schwartz (1990).
In the model, the commodity spot price S follows a geometric Brownian motion and the conve-
nience yield q follows an Ornstein-Uhlenbeck process such that

ds

<= (us — q)dt + o5dBs,

dq = k(q — q)dt + 04dBy,

where dBsdB,; = p; 4. Note that the process for ¢ makes the convenience yield to revert back
to its long run value g. The speed of this mean-reversion is determined by k, but also by how
volatile is the convenience yield.

The paper by Gibson and Schwartz (1990) was one of the first multifactor pricing model to
introduce variation not only in the spot price but also in the dividend yield.

An alternative two-factor model of commodity prices was introduced by Schwartz and Smith
(2000). The motivation for their model is different than Gibson and Schwartz (1990). Schwartz
and Smith (2000) assume that the log-spot price is subject to two type of shocks, permanent
and temporary shocks. In the Schwartz and Smith (2000) model, permanent shocks are model
by an arithmetic Brownian motion whereas the temporary shocks mean-revertto a zero mean.

More specifically, in the Schwartz and Smith (2000) model we have that In(S) = x +y, where x
denotes a permanent shock and y denotes atemporary shock. The dynamics of these processes
are described by

dx = p,dt + 0,dB,,

dy = —kydt + 0,,dB,,

where dB,dB,, = py ,dt.

Even though the models look different, it turns out that they are equivalent. Dai and Singleton
(2000) show that many multifactor models of interest rates can be rotated and translated
to produce equivalent models. It turns out that the same is true for multifactor models of
commodity prices. In the appendix | show how the parameters and Brownian motions of the
model of Schwartz and Smith (2000) can be written in terms of the parameters and Brownian
motions of the Gibson and Schwartz (1990) model.



In the following, | will solve for the futures price in the Schwartz and Smith (2000) model since
their way of writing the model makes it easier to present the solution method.

The Model

Consider two independent Brownian motions B, and B, defined on the probability space

(Q,F,P), and define B, = p, ,, By + /1 — pZyB,. Then B, is a Brownian motion such that
dBxdB,), = py,dt.

Consider first the arithmetic Brownian motion process for x that in the model is given by
dx = u,dt + o,dB,.

Then,
Xt = Xo + Uy T + 0xByr.

Since B, 7 is normally distributed with mean 0 and variance T, we have that xr is normal with

mean and variance given by
E(xT) = Xo + .u'xT'

V(xr) = o2T.
Now consider the Ornstein—-Uhlenbeck process for y which in the model is given by
dy = —kydt + 0,dB,,.
To solve for yr, introduce z, = y,e*t. Applying Ito’s lemma to z we find
dz = e*'dy + kye*tdt = g,e*'dB,,.

Integrating both sides from 0 to T we find

T
Zr = zy + ayf e*tdB,,,
0



or in terms of y we can write
T
yr = yoe *T + aye""Tf e*tdB,.
0

T . . .
Because fo e"tdByt is normal with mean 0 and variance

T 2KT_1

T e
2Kt dB 2 =f Zictdt — ,
| eran=| e T

the future value of y attime T is also normal with mean and variance are given by

E(yr) = yoe "
1— e—ZKT

V(yr) = 0'3% oK

Finally, we can compute the covariance between x and yr as
T

Cov(xr,yr) = O'xO'yEKTf e ™ dB,dBy;
0

T
= Jxaye"Tf e p, ydt
0

1-— e—KT

Because xr and yr are jointly normal, we have that x; + yr is normally distributed. Thus,
E(St) = E(InSp)

= exp(E In(S7) + VIn(Sr))

1 1
= exp <E(XT) + EQyr) + > V(xr) + > V(yr) + Cov(xr, }’T)>
11— 2

—KkT 1, 2 1—e™
=exp|xg + yoe + [th + EO'xT + EO'yZ—K + px,yO'xO'yT .

Also, note that because in the model In(S7) is normal, we can easily answers questions such



as what is the probability that the commodity price at time T will be grater than K. Indeed,

_plz> InK — Eln(S7)
- NITYED)

_plz< Eln(Sr) —InK
- NGy )

where Z ~ N (0, 1).

Adjusting for Risk

In order to be able to use the model to price futures contracts, we need first to adjust for risk.
Ideally, we would like to adjust for risk each of the drift parameters in x and y. In their original
paper, Schwartz and Smith (2000) only adjust ¢ and the level of y. We can easily also adjust k
by introducing a time-varying market price of risk for B,.

In order to do this, let

dA
— = —rdt = 2,dB, ~ (Ao, + A1,)dB,,

be the stochastic discount factor. We assume that both Brownian motions B, and B, are
spanned by existing traded contracts so that 1, 1, and 4, are uniquely identified.

t
Let € = AB where B; = ﬁoefo 7sdS \We do not really care about the dynamics of r except for

the fact that we need € to be a martingale under P. Applying Ito’s lemma to € we find that,

d&é
< - —AxdBy — (Aoz + A1) dB,.

Thus,
d€
?de = —1,dt,



and
de de 5
?dBy == ? px‘yde + 1 - px'ydBZ

= _Axpx,ydt - J1- p%J’(;{OZ + A1zy)dt

= - (Axpx,y + ’ 1- P%,y%z) dt — <1 ’ 1- p&%;)”hz)’) ydt

= —(doy + A1yy)dt,

where gy, = Aypyy + /1 — p%ylrozand Ayy = /1 — Py

According to Girsanov’s theorem,

it = Byt + Axt,
;t = Byt + (AOy + llyY)t:

are P*-Browninan motions where the measure P* is defined through its Radon-Nikodym deriva-

tive as .
dPp

dP
The risk-adjusted processes for x and y are then

= ST'

dx = p,dt + 0,dB;,
dy = (—k*y — A")dt + +0,dBy,

where Uy = [ty — OxAy, A" = 0ydgy, and k™ = Kk + 044,

Solving for the Futures Price
The futures price expiring at T is the expected spot price under the risk-neutral measure, i.e.,
F(T) = E"(S).

Since the change of measure only changes constant coefficients into risk-adjusted constant
coefficients, the log of the spot price is still normally distributed under the risk-neutral measure



P*. Thus, the futures prices expiring at T is just

1 1
F(T) =exp (E*(XT) +E"(yr) + 5 Vi(xr) + 5 V*(yr) + Cov* (x7, }’T)> -

The only difference between E* (x7), V*(x1), V' (yr), Cov” (x7, yr) and their not starred coun-
terparts is that starred moments use u* and k™ instead of i and k. So we have that

E*(xr) = xo + pxT,
V*(xr) = 04T,

. ) 1 — e—ZK*T
V'(yr) = oy T
1-— e—K*T

*
Cov' (xr, yr) = Px,y0x0y e

The only starred moment that is different is E*(yyy) since now the risk-adjusted process for y
has an extra component given by A*. If we follow the same method used to solve for y under P,

we find that
KT

T
— -K'T _ A e + —-K*'T K*tdB*
Yr = Yo€ " O-ye e Y
K 0

Therefore,

X 1— e—K*T
£ () = 3o T~ X T

The futures price in the Schwartz and Smith (2000) model is then

K* 2 27 2K

1-e T 1 1 ,1—e 2T 1- e-K*T>
K* '

F(T) = exp <x0 +y0e KT+ T — A ——— + ~02T + =0 + Pxy0x0y



Appendix

In this appendix | show the equivalence between the models of Gibson and Schwartz (1990)
and Schwartz and Smith (2000). We start with the model of Gibson and Schwartz (1990),

ds
<= (u — q)dt + o5dBs,

dq = k(q — q)dt + 04dBy,
where dBsdB; = ps 4.

We know that In(S) follows an arithmetic P-Brownian motion

ds 1(ds\’ 1,
dln(S)z?—E <) = ,U—EO'S dt — qdt + o5dBs.

Definez = q — q. Then,

1
dIn(S) = <u - EGS? — q) dt — zdt + o5dBs,
dz = —kzdt + 04dB,.

Since P B
Z—0,
—zdt = #'

we can write d In(S) as
1, dz Oq
din(§) =|pu— 505 —q|dt + — + 0o5dBs — —dB,.
2 K K
Lety = z/k. Then,
dy =" _zat + 2B, = —xyde + “ap
Y= T 7F  Pa T T k 7

Define
dx = u,dt + o0,dB,,



where
1

Hx = KU — EO-S? - q,
oy = |02 + 0i /K2,
1 o
dBy = — (anBS - 7qu).

o + ai /K>
Clearly, B, is a Brownian motion such that

1 aq
dB,dB, = —— (ps,qas - 7) dt.
0é + 0f [K?

In the Schwartz and Smith (2000) model we have that

n(S)=x+y
dx = u,dt + 0, dB,,
dy = —kydt + 0,,dB,,

where dB,dB,, = p, ,dt.

Therefore, the parameters and Brownian motions in the Schwartz and Smith (2000) model can

be defined in terms of the parameters and Brownian motions in the Gibson and Schwartz (1990)



model as

oy = |0Z + 04 /K2,
_ Y
oy, =—,
K
1 q
Bx = JSBS — Bq )
o + o [K?
By = Bq,
1 o
Pxy = Ps,q0s M
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