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Commodity Pricing Models

Introduction

The Black-Scholes model assumes assume that stock prices follow a Geometric Brownian

with a constant drift. The model can bemodified to account for a constant dividend yield. The

risk-neutral dynamics for the stock price in this case are given by

𝑑𝑆

𝑆
= (𝑟 − 𝑞)𝑑𝑡 + 𝜎𝑑𝐵∗

𝑆 ,

where I use 𝑞 to denote the dividend yield paid by the stock. The futures price in this case is

just

𝐹(𝑇) = E
∗ 𝑆𝑇 = 𝑆𝑒(𝑟−𝑞)𝑇.

If𝑟 > 𝑞, the futurespricewill alwaysbean increasing functionof𝑇, whereas if𝑟 < 𝑞 the function

will be decreasing. Even though for stocks this assumption could be a good approximation of

what we observe in practice, for commodities we typically see the slope of the term-structure

of futures prices to change sign over time.

One explanation for a time-varying slope in the term-structure of future prices is that the implicit

dividend that accrues to the owner of the physical commodity might vary over time. We call

this implicit dividend the convenience yield of the commodity. For many commodities, it

represent the fact that the commodity can be put to use in productive activities and therefore is

valuable to have it in storage, just in case.

A simple way to introduce time-variation in the convenience yield is to assume that it follows

a mean-reverting process. If the convenience yield of the commodity is too high, then high

cost producers will start extracting the commodity increasing supply and reducing the value of

physically owning the commodity. On the contrary, if the convenience yield is too low, supple de-

creases and therefore the value of owning the physical commodity increases. The convenience

yield is therefore an implicit dividend net of storage costs.
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A simple model that captures these ideas was first introduced by Gibson and Schwartz (1990).

In the model, the commodity spot price 𝑆 follows a geometric Brownian motion and the conve-

nience yield 𝑞 follows an Ornstein-Uhlenbeck process such that

𝑑𝑆

𝑆
= (𝜇𝑆 − 𝑞)𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑆,

𝑑𝑞 = 𝜅(𝑞̄ − 𝑞)𝑑𝑡 + 𝜎𝑞𝑑𝐵𝑞,

where 𝑑𝐵𝑆𝑑𝐵𝑞 = 𝜌𝑠,𝑞. Note that the process for 𝑞makes the convenience yield to revert back

to its long run value 𝑞̄. The speed of this mean-reversion is determined by 𝜅, but also by how

volatile is the convenience yield.

The paper by Gibson and Schwartz (1990) was one of the first multifactor pricing model to

introduce variation not only in the spot price but also in the dividend yield.

An alternative two-factor model of commodity prices was introduced by Schwartz and Smith

(2000). The motivation for their model is different than Gibson and Schwartz (1990). Schwartz

and Smith (2000) assume that the log-spot price is subject to two type of shocks, permanent

and temporary shocks. In the Schwartz and Smith (2000) model, permanent shocks are model

by an arithmetic Brownianmotionwhereas the temporary shocksmean-revert to a zeromean.

More specifically, in the Schwartz and Smith (2000)model we have that ln(𝑆) = 𝑥+𝑦, where 𝑥

denotesapermanent shockand𝑦denotes a temporary shock. Thedynamicsof theseprocesses

are described by

𝑑𝑥 = 𝜇𝑥𝑑𝑡 + 𝜎𝑥𝑑𝐵𝑥,

𝑑𝑦 = −𝜅𝑦𝑑𝑡 + 𝜎𝑦𝑑𝐵𝑦,

where 𝑑𝐵𝑥𝑑𝐵𝑦 = 𝜌𝑥,𝑦𝑑𝑡.

Even though the models look different, it turns out that they are equivalent. Dai and Singleton

(2000) show that many multifactor models of interest rates can be rotated and translated

to produce equivalent models. It turns out that the same is true for multifactor models of

commodity prices. In the appendix I show how the parameters and Brownianmotions of the

model of Schwartz and Smith (2000) can be written in terms of the parameters and Brownian

motions of the Gibson and Schwartz (1990) model.
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In the following, I will solve for the futures price in the Schwartz and Smith (2000) model since

their way of writing the model makes it easier to present the solution method.

The Model

Consider two independent Brownian motions 𝐵𝑥 and 𝐵𝑧 defined on the probability space

(Ω, ℱ, P), and define 𝐵𝑦 = 𝜌𝑥,𝑦𝐵𝑥 + �1 − 𝜌2𝑥,𝑦𝐵𝑧. Then 𝐵𝑦 is a Brownian motion such that

𝑑𝐵𝑥𝑑𝐵𝑦 = 𝜌𝑥,𝑦𝑑𝑡.

Consider first the arithmetic Brownian motion process for 𝑥 that in the model is given by

𝑑𝑥 = 𝜇𝑥𝑑𝑡 + 𝜎𝑥𝑑𝐵𝑥.

Then,

𝑥𝑇 = 𝑥0 + 𝜇𝑥𝑇 + 𝜎𝑥𝐵𝑥𝑇.

Since𝐵𝑥,𝑇 is normally distributed with mean 0 and variance 𝑇, we have that 𝑥𝑇 is normal with

mean and variance given by

E(𝑥𝑇) = 𝑥0 + 𝜇𝑥𝑇,

V(𝑥𝑇) = 𝜎2
𝑥𝑇.

Now consider the Ornstein–Uhlenbeck process for 𝑦which in the model is given by

𝑑𝑦 = −𝜅𝑦𝑑𝑡 + 𝜎𝑦𝑑𝐵𝑦.

To solve for 𝑦𝑇, introduce 𝑧𝑡 = 𝑦𝑡𝑒
𝜅𝑡. Applying Ito’s lemma to 𝑧we find

𝑑𝑧 = 𝑒𝜅𝑡𝑑𝑦 + 𝜅𝑦𝑒𝜅𝑡𝑑𝑡 = 𝜎𝑦𝑒
𝜅𝑡𝑑𝐵𝑦.

Integrating both sides from 0 to T we find

𝑧𝑇 = 𝑧0 + 𝜎𝑦�
𝑇

0

𝑒𝜅𝑡𝑑𝐵𝑦𝑡,
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or in terms of 𝑦we can write

𝑦𝑇 = 𝑦0𝑒
−𝜅𝑇 + 𝜎𝑦𝑒

−𝜅𝑇�
𝑇

0

𝑒𝜅𝑡𝑑𝐵𝑦𝑡.

Because ∫
𝑇

0
𝑒𝜅𝑡𝑑𝐵𝑦𝑡 is normal with mean 0 and variance

�
𝑇

0

𝑒2𝜅𝑡(𝑑𝐵𝑦𝑡)
2 = �

𝑇

0

𝑒2𝜅𝑡𝑑𝑡 =
𝑒2𝜅𝑇 − 1

2𝜅
,

the future value of 𝑦 at time 𝑇 is also normal with mean and variance are given by

E(𝑦𝑇) = 𝑦0𝑒
−𝜅𝑇

V(𝑦𝑇) = 𝜎2
𝑦

1 − 𝑒−2𝜅𝑇

2𝜅
.

Finally, we can compute the covariance between 𝑥𝑇 and 𝑦𝑇 as

Cov(𝑥𝑇, 𝑦𝑇) = 𝜎𝑥𝜎𝑦𝑒
𝜅𝑇�

𝑇

0

𝑒−𝜅𝑡𝑑𝐵𝑥𝑡𝑑𝐵𝑦𝑡

= 𝜎𝑥𝜎𝑦𝑒
𝜅𝑇�

𝑇

0

𝑒−𝜅𝑡𝜌𝑥,𝑦𝑑𝑡

= 𝜌𝑥,𝑦𝜎𝑥𝜎𝑦
1 − 𝑒−𝜅𝑇

𝜅
.

Because 𝑥𝑇 and 𝑦𝑇 are jointly normal, we have that 𝑥𝑇 + 𝑦𝑇 is normally distributed. Thus,

E(𝑆𝑇) = E(ln 𝑆𝑇)

= exp(E ln(𝑆𝑇) + V ln(𝑆𝑇))

= exp�E(𝑥𝑇) + E(𝑦𝑇) +
1

2
V(𝑥𝑇) +

1

2
V(𝑦𝑇) + Cov(𝑥𝑇, 𝑦𝑇)�

= exp�𝑥0 + 𝑦0𝑒
−𝜅𝑇 + 𝜇𝑥𝑇 +

1

2
𝜎2
𝑥𝑇 +

1

2
𝜎2
𝑦

1 − 𝑒−2𝜅𝑇

2𝜅
+ 𝜌𝑥,𝑦𝜎𝑥𝜎𝑦

1 − 𝑒−𝜅𝑇

𝜅
� .

Also, note that because in the model ln(𝑆𝑇) is normal, we can easily answers questions such
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as what is the probability that the commodity price at time 𝑇will be grater than𝐾. Indeed,

P(𝑆𝑇 > 𝐾) = P(ln 𝑆𝑇 > ln𝐾)

= P�𝑍 >
ln𝐾 − E ln(𝑆𝑇)

�V ln(𝑆𝑇)
�

= P�𝑍 <
E ln(𝑆𝑇) − ln𝐾

�V ln(𝑆𝑇)
� ,

where 𝑍 ∼ 𝒩(0, 1).

Adjusting for Risk

In order to be able to use themodel to price futures contracts, we need first to adjust for risk.

Ideally, we would like to adjust for risk each of the drift parameters in 𝑥 and 𝑦. In their original

paper, Schwartz and Smith (2000) only adjust 𝜇 and the level of 𝑦. We can easily also adjust 𝜅

by introducing a time-varying market price of risk for𝐵𝑧.

In order to do this, let

𝑑Λ

Λ
= −𝑟𝑑𝑡 − 𝜆𝑥𝑑𝐵𝑥 − (𝜆0𝑧 + 𝜆1𝑧𝑦)𝑑𝐵𝑧,

be the stochastic discount factor. We assume that both Brownian motions 𝐵𝑥 and 𝐵𝑧 are

spanned by existing traded contracts so that 𝜆𝑥, 𝜆0𝑧 and 𝜆1𝑧 are uniquely identified.

Let ℰ = Λ𝛽where 𝛽𝑡 = 𝛽0𝑒
∫
𝑡

0
𝑟𝑠𝑑𝑠. We do not really care about the dynamics of 𝑟 except for

the fact that we need ℰ to be a martingale under P. Applying Ito’s lemma to ℰwe find that,

𝑑ℰ

ℰ
= −𝜆𝑥𝑑𝐵𝑥 − (𝜆0𝑧 + 𝜆1𝑧𝑦)𝑑𝐵𝑧.

Thus,
𝑑ℰ

ℰ
𝑑𝐵𝑥 = −𝜆𝑥𝑑𝑡,
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and
𝑑ℰ

ℰ
𝑑𝐵𝑦 =

𝑑ℰ

ℰ
�𝜌𝑥,𝑦𝑑𝐵𝑥 +�1 − 𝜌2𝑥,𝑦𝑑𝐵𝑧�

= −𝜆𝑥𝜌𝑥,𝑦𝑑𝑡 − �1 − 𝜌2𝑥,𝑦(𝜆0𝑧 + 𝜆1𝑧𝑦)𝑑𝑡

= −�𝜆𝑥𝜌𝑥,𝑦 +�1 − 𝜌2𝑥,𝑦𝜆0𝑧�𝑑𝑡 − ��1 − 𝜌2𝑥,𝑦𝜆1𝑧𝑦�𝑦𝑑𝑡

= −(𝜆0𝑦 + 𝜆1𝑦𝑦)𝑑𝑡,

where 𝜆0𝑦 = 𝜆𝑥𝜌𝑥,𝑦 +�1 − 𝜌2𝑥,𝑦𝜆0𝑧 and 𝜆1𝑦 = �1 − 𝜌2𝑥,𝑦𝜆1𝑧.

According to Girsanov’s theorem,

𝐵∗
𝑥𝑡 = 𝐵𝑥𝑡 + 𝜆𝑥𝑡,

𝐵∗
𝑦𝑡 = 𝐵𝑦𝑡 + (𝜆0𝑦 + 𝜆1𝑦𝑦)𝑡,

are P
∗
-Browninan motions where the measure P

∗
is defined through its Radon-Nikodym deriva-

tive as
𝑑 P∗

𝑑 P
= ℰ𝑇.

The risk-adjusted processes for 𝑥 and 𝑦 are then

𝑑𝑥 = 𝜇∗𝑥𝑑𝑡 + 𝜎𝑥𝑑𝐵
∗
𝑥 ,

𝑑𝑦 = (−𝜅∗𝑦 − 𝜆∗)𝑑𝑡 + +𝜎𝑦𝑑𝐵
∗
𝑦,

where 𝜇∗𝑥 = 𝜇𝑥 − 𝜎𝑥𝜆𝑥, 𝜆
∗ = 𝜎𝑦𝜆0𝑦, and 𝜅

∗ = 𝜅 + 𝜎𝑦𝜆1𝑦.

Solving for the Futures Price

The futures price expiring at 𝑇 is the expected spot price under the risk-neutral measure, i.e.,

𝐹(𝑇) = E
∗(𝑆𝑇).

Since the change of measure only changes constant coefficients into risk-adjusted constant

coefficients, the log of the spot price is still normally distributed under the risk-neutral measure
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P
∗
. Thus, the futures prices expiring at 𝑇 is just

𝐹(𝑇) = exp�E∗(𝑥𝑇) + E
∗(𝑦𝑇) +

1

2
V
∗(𝑥𝑇) +

1

2
V
∗(𝑦𝑇) + Cov

∗(𝑥𝑇, 𝑦𝑇)� .

The only difference between E
∗(𝑥𝑇), V

∗(𝑥𝑇), V
∗(𝑦𝑇),Cov

∗(𝑥𝑇, 𝑦𝑇) and their not starred coun-

terparts is that starred moments use 𝜇∗ and 𝜅∗ instead of 𝜇 and 𝜅. So we have that

E
∗(𝑥𝑇) = 𝑥0 + 𝜇∗𝑥𝑇,

V
∗(𝑥𝑇) = 𝜎2

𝑥𝑇,

V
∗(𝑦𝑇) = 𝜎2

𝑦

1 − 𝑒−2𝜅
∗𝑇

2𝜅∗
,

Cov
∗(𝑥𝑇, 𝑦𝑇) = 𝜌𝑥,𝑦𝜎𝑥𝜎𝑦

1 − 𝑒−𝜅
∗𝑇

𝜅∗
.

The only starredmoment that is different is E
∗(𝑦𝑇) since now the risk-adjusted process for 𝑦

has an extra component given by 𝜆∗. If we follow the samemethod used to solve for 𝑦𝑇 under P,

we find that

𝑦𝑇 = 𝑦0𝑒
−𝜅∗𝑇 − 𝜆∗

1 − 𝑒−𝜅
∗𝑇

𝜅∗
+ 𝜎𝑦𝑒

−𝜅∗𝑇�
𝑇

0

𝑒𝜅
∗𝑡𝑑𝐵∗

𝑦𝑡.

Therefore,

E
∗(𝑦𝑇) = 𝑦0𝑒

−𝜅∗𝑇 − 𝜆∗
1 − 𝑒−𝜅

∗𝑇

𝜅∗
.

The futures price in the Schwartz and Smith (2000) model is then

𝐹(𝑇) = exp�𝑥0 + 𝑦0𝑒
−𝜅∗𝑇 + 𝜇∗𝑥𝑇 − 𝜆∗

1 − 𝑒−𝜅
∗𝑇

𝜅∗
+
1

2
𝜎2
𝑥𝑇 +

1

2
𝜎2
𝑦

1 − 𝑒−2𝜅
∗𝑇

2𝜅∗
+ 𝜌𝑥,𝑦𝜎𝑥𝜎𝑦

1 − 𝑒−𝜅
∗𝑇

𝜅∗
� .
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Appendix

In this appendix I show the equivalence between themodels of Gibson and Schwartz (1990)

and Schwartz and Smith (2000). We start with the model of Gibson and Schwartz (1990),

𝑑𝑆

𝑆
= (𝜇 − 𝑞)𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑆,

𝑑𝑞 = 𝜅(𝑞̄ − 𝑞)𝑑𝑡 + 𝜎𝑞𝑑𝐵𝑞,

where 𝑑𝐵𝑆𝑑𝐵𝑞 = 𝜌𝑠,𝑞.

We know that ln(𝑆) follows an arithmetic P-Brownian motion

𝑑 ln(𝑆) =
𝑑𝑆

𝑆
−
1

2
�
𝑑𝑆

𝑆
�

2

= �𝜇 −
1

2
𝜎2
𝑆 �𝑑𝑡 − 𝑞𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑆.

Define 𝑧 = 𝑞 − 𝑞̄. Then,

𝑑 ln(𝑆) = �𝜇 −
1

2
𝜎2
𝑆 − 𝑞̄�𝑑𝑡 − 𝑧𝑑𝑡 + 𝜎𝑆𝑑𝐵𝑆,

𝑑𝑧 = −𝜅𝑧𝑑𝑡 + 𝜎𝑞𝑑𝐵𝑞.

Since

−𝑧𝑑𝑡 =
𝑑𝑧 − 𝜎𝑞𝑑𝐵𝑞

𝜅
,

we can write 𝑑 ln(𝑆) as

𝑑 ln(𝑆) = �𝜇 −
1

2
𝜎2
𝑆 − 𝑞̄�𝑑𝑡 +

𝑑𝑧

𝜅
+ 𝜎𝑆𝑑𝐵𝑆 −

𝜎𝑞

𝜅
𝑑𝐵𝑞.

Let 𝑦 = 𝑧/𝜅. Then,

𝑑𝑦 =
𝑑𝑧

𝜅
= −𝑧𝑑𝑡 +

𝜎𝑞

𝜅
𝑑𝐵𝑞 = −𝜅𝑦𝑑𝑡 +

𝜎𝑞

𝜅
𝑑𝐵𝑞.

Define

𝑑𝑥 = 𝜇𝑥𝑑𝑡 + 𝜎𝑥𝑑𝐵𝑥,
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where

𝜇𝑥 = 𝜇 −
1

2
𝜎2
𝑆 − 𝑞̄,

𝜎𝑥 = �𝜎2
𝑆 + 𝜎2

𝑞 /𝜅2,

𝑑𝐵𝑥 =
1

�𝜎2
𝑆 + 𝜎2

𝑞 /𝜅2
�𝜎𝑆𝑑𝐵𝑆 −

𝜎𝑞

𝜅
𝑑𝐵𝑞� .

Clearly,𝐵𝑥 is a Brownian motion such that

𝑑𝐵𝑥𝑑𝐵𝑞 =
1

�𝜎2
𝑆 + 𝜎2

𝑞 /𝜅2
�𝜌𝑆,𝑞𝜎𝑆 −

𝜎𝑞

𝜅
� 𝑑𝑡.

In the Schwartz and Smith (2000) model we have that

ln(𝑆) = 𝑥 + 𝑦

𝑑𝑥 = 𝜇𝑥𝑑𝑡 + 𝜎𝑥𝑑𝐵𝑥,

𝑑𝑦 = −𝜅𝑦𝑑𝑡 + 𝜎𝑦𝑑𝐵𝑦,

where 𝑑𝐵𝑥𝑑𝐵𝑦 = 𝜌𝑥,𝑦𝑑𝑡.

Therefore, the parameters and Brownian motions in the Schwartz and Smith (2000) model can

be defined in terms of the parameters and Brownianmotions in the Gibson and Schwartz (1990)
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model as

𝜇𝑥 = 𝜇 −
1

2
𝜎2
𝑆 − 𝑞̄,

𝜎𝑥 = �𝜎2
𝑆 + 𝜎2

𝑞 /𝜅2,

𝜎𝑦 =
𝜎𝑞

𝜅
,

𝐵𝑥 =
1

�𝜎2
𝑆 + 𝜎2

𝑞 /𝜅2
�𝜎𝑆𝐵𝑆 −

𝜎𝑞

𝜅
𝐵𝑞� ,

𝐵𝑦 = 𝐵𝑞,

𝜌𝑥,𝑦 =
1

�𝜎2
𝑆 + 𝜎2

𝑞 /𝜅2
�𝜌𝑆,𝑞𝜎𝑆 −

𝜎𝑞

𝜅
� .
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