Options, Futures and Derivative Securities
Spring 2025
Variable | Call | Put |
---|---|---|
V | S e^{-\delta T} \mathop{\Phi}(d_{1}) - K e^{-r T} \mathop{\Phi}(d_{2}) | K e^{-r T} \mathop{\Phi}(-d_{2}) - S e^{-\delta T} \mathop{\Phi}(-d_{1}) |
\Delta | e^{-\delta T} \mathop{\Phi}(d_{1}) | -e^{-\delta T} \mathop{\Phi}(-d_{1}) |
\Gamma | \dfrac{e^{-\delta T} \mathop{\Phi^{'}}(d_{1})}{S \sigma \sqrt{T}} = \dfrac{K e^{-r T} \mathop{\Phi^{'}}(d_{2})}{S^{2} \sigma \sqrt{T}} | |
\Theta | r V - (r - \delta) S \Delta - \frac{1}{2} \sigma^{2} S^{2} \Gamma | |
\mathcal{V} | S e^{-\delta T} \mathop{\Phi^{'}}(d_{1}) \sqrt{T} = K e^{-r T} \mathop{\Phi^{'}}(d_{2}) \sqrt{T} | |
\rho | K T e^{-r T} \mathop{\Phi}(d_{2}) | - K T e^{-r T} \mathop{\Phi}(-d_{2}) |
Delta | Gamma | Vega | |
---|---|---|---|
Portfolio | 0 | -5,000 | -8,000 |
Option 1 | 0.6 | 0.5 | 2.0 |
Option 2 | 0.5 | 0.8 | 1.2 |