Options, Futures and Derivative Securities
Spring 2025
| Variable | Call | Put |
|---|---|---|
| V | S e^{-\delta T} \mathop{\Phi}(d_{1}) - K e^{-r T} \mathop{\Phi}(d_{2}) | K e^{-r T} \mathop{\Phi}(-d_{2}) - S e^{-\delta T} \mathop{\Phi}(-d_{1}) |
| \Delta | e^{-\delta T} \mathop{\Phi}(d_{1}) | -e^{-\delta T} \mathop{\Phi}(-d_{1}) |
| \Gamma | \dfrac{e^{-\delta T} \mathop{\Phi^{'}}(d_{1})}{S \sigma \sqrt{T}} = \dfrac{K e^{-r T} \mathop{\Phi^{'}}(d_{2})}{S^{2} \sigma \sqrt{T}} | |
| \Theta | r V - (r - \delta) S \Delta - \frac{1}{2} \sigma^{2} S^{2} \Gamma | |
| \mathcal{V} | S e^{-\delta T} \mathop{\Phi^{'}}(d_{1}) \sqrt{T} = K e^{-r T} \mathop{\Phi^{'}}(d_{2}) \sqrt{T} | |
| \rho | K T e^{-r T} \mathop{\Phi}(d_{2}) | - K T e^{-r T} \mathop{\Phi}(-d_{2}) |
| Delta | Gamma | Vega | |
|---|---|---|---|
| Portfolio | 0 | -5,000 | -8,000 |
| Option 1 | 0.6 | 0.5 | 2.0 |
| Option 2 | 0.5 | 0.8 | 1.2 |