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Options on Assets Paying a Dividend Yield

General Framework

The Dividend Yield

It is usually convenient to model dividends as a percentage yield paid over time. We
will denote the continuously-compounded dividend yield by 𝛿. The asset 𝑆 then pays
every instant 𝑡 a dividend of 𝛿Δ𝑡 shares and therefore 𝛿𝑆𝑡Δ𝑡 dollars. Therefore, if you
purchase one unit of the asset at time 𝑡 for 𝑆𝑡, the value of the portfolio at time 𝑡+Δ𝑡will
be 𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡.
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Youwill notice that the payment of the dividend at time 𝑡+Δ𝑡 is known at time 𝑡. Indeed,
this payment depends on the value of the stock at time 𝑡 and not 𝑡 + Δ𝑡. This is not a
mistake or a convenience, but reflects the fact that we want to incorporate in the total
return of investing in the stock from time 𝑡 to 𝑡 + Δ𝑡 both capital gains and dividends:

𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡 − 𝑆𝑡
𝑆𝑡ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

Total Return

= Δ𝑆𝑡
𝑆𝑡ต

Capital Gains

+ 𝛿Δ𝑡
ต

Dividends

. (1)

In practice, this is the approach used tomodel options on stock indices and foreign cur-
rencies, although some practitioners also use it to model individual stocks as well. We
must note that specially for American type options, modelling lump-sum dividends as a
continuous yield might induce errors in computing the optimal early-exercise policy. It
could also lead to the wrong risk-neutral adjustment if dividends are paid, say, twice per
year, and we want to risk-adjust the underlying asset process for the next three months
just after a dividend has been paid.
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Replicating A Derivative

Aswedid in the previous chapterwhere therewere no dividends, to price a call or put op-
tion we take the point of view of a trading desk thatmakes themarket for such contracts.
Their sales team just sold a European option𝐻 written on a stock 𝑆 with maturity 𝑇 to a
client. The stock in this case, though, pays a continuous dividend yield 𝛿.
The traders of the deskwill replicate the option by buying (or selling)𝑁𝑆 units of the stock
and 𝑁𝐵 units of a bond with face value 𝐾 and maturity 𝑇, respectively. The difference
in this case compared to the no-dividend stock is that the number of shares bought will
grow, so that the trader will have to buy a little less in order to hedge a call option, for
example.

If we call 𝑉 the value of such replicating portfolio, we have that:

𝑉𝑡 = 𝑁𝑆,𝑡𝑆𝑡 + 𝑁𝐵,𝑡𝐵𝑡. (2)

At time 𝑡 + Δ𝑡, and because the underlying asset pays dividends, the value of the repli-
cating portfolio is:

𝑉𝑡+Δ𝑡 = 𝑁𝑆,𝑡(𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡) + 𝑁𝐵,𝑡𝐵𝑡+Δ𝑡,
which implies that:

Δ𝑉𝑡 = 𝑁𝑆,𝑡(Δ𝑆𝑡 + 𝛿𝑆𝑡Δ𝑡) + 𝑁𝐵,𝑡Δ𝐵𝑡.

As Δ𝑡 → 0, we have that:
𝑑𝑉 = 𝑁𝑆(𝑑𝑆 + 𝛿𝑆𝑑𝑡) + 𝑁𝐵𝑑𝐵

= 𝑁𝑆(𝑑𝑆 + 𝛿𝑆𝑑𝑡) + 𝑟(𝑁𝐵𝐵)𝑟𝑑𝑡
= 𝑁𝑆(𝑑𝑆 + 𝛿𝑆𝑑𝑡) + 𝑟(𝑉 − 𝑁𝑆𝑆)𝑑𝑡
= (𝑟𝑉 − (𝑟 − 𝛿)𝑁𝑆𝑆) 𝑑𝑡 + 𝑁𝑆𝑑𝑆,

(3)

where in thesecond lineweused the fact that𝑑𝐵 = 𝑟𝐵𝑑𝑡, and in the third lineweapplied
the self-financing condition (2) re-written as𝑁𝐵𝐵 = 𝑉 − 𝑁𝑆𝑆.
As in thepreviouschapter, equation (3) captures thedynamicsof the replicatingportfolio
needed to hedge the short position. For the hedge to be successful, the dynamics of the
long position must match the dynamics of the short position that are given by:

𝑑𝑉 = 𝜕𝑉
𝜕𝑆 𝑑𝑆 +

1
2𝜎

2𝑆2𝜕
2𝑉
𝜕𝑆2 𝑑𝑡 +

𝜕𝑉
𝜕𝑡 𝑑𝑡. (4)

Equating (3) and (4) shows that:

ቆ12𝜎
2𝑆2𝜕

2𝑉
𝜕𝑆2 +

𝜕𝑉
𝜕𝑡 ቇ𝑑𝑡 +

𝜕𝑉
𝜕𝑆 𝑑𝑆 = (𝑟𝑉 − (𝑟 − 𝛿)𝑁𝑆𝑆) 𝑑𝑡 + 𝑁𝑆𝑑𝑆. (5)
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Equation (5) reveals that, even in the presence of a dividend yield, the number of shares
required to hedge the option must equal the partial derivative with respect to the stock
price. Therefore, choosing𝑁𝑆 =

𝜕𝑉
𝜕𝑆 implies that:

1
2𝜎

2𝑆2𝜕
2𝑉
𝜕𝑆2 + (𝑟 − 𝛿)𝑆𝜕𝑉𝜕𝑆 +

𝜕𝑉
𝜕𝑡 − 𝑟𝑉 = 0 (6)

with boundary condition 𝑉𝑇 = 𝐹(𝑆𝑇).
Equation (6) is the Black-Scholes partial differential equation (PDE) that must satisfy all
derivatives written on an asset that pays a dividend yield.1

Example 1. Consider a forward contract written on an asset that pays a dividend yield
𝑞 expiring at time 𝑇 with forward price 𝐾. The value 𝑉 of the forward contract at time
0 ≤ 𝑡 ≤ 𝑇 is:

𝑉 = 𝑆𝑒−𝛿(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)

Let us check that the value of the contract satisfies the Black-Scholes PDE equation (6).
The relevant derivatives are

𝜕𝑉
𝜕𝑆 = 𝑒−𝛿(𝑇−𝑡),
𝜕2𝑉
𝜕𝑆2 = 0,
𝜕𝑉
𝜕𝑡 = 𝛿𝑆𝑒−𝛿(𝑇−𝑡) − 𝑟𝐾𝑒−𝑟(𝑇−𝑡).

The left-hand side of equation (6) then becomes

(𝑟 − 𝛿)𝑆𝑒−𝛿(𝑇−𝑡) + 𝛿𝑆𝑒−𝛿(𝑇−𝑡) − 𝑟𝐾𝑒−𝑟(𝑇−𝑡) − 𝑟(𝑆𝑒−𝛿(𝑇−𝑡) − 𝐾𝑒−𝑟(𝑇−𝑡)) = 0,

which clearly satisfy the claim.

The Risk-Neutral Process for the Underlying Asset

As in the Black-Scholes model, the replication argument is indifferent of the dynamics
of the stock. This implies that the same logic should work in a hypothetical world where

1The Black-Scholes PDE given by (6) is only valid for derivative instruments (or assets) that do not pay
dividends themselves, even though they arewritten on adividendpaying asset. The stock, for example,
does not satisfy equation (6) since it pays a dividend. A generalized PDE that allows for the derivative
to also pay a dividend yield can be found in the appendix.
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everyone is risk-neutral. In such a world, the expected total return of all assets is the risk-
free rate. Hence, equation (1) implies that:

𝑆𝑡+Δ𝑡 + 𝛿𝑆𝑡Δ𝑡 − 𝑆𝑡
𝑆𝑡

= Δ𝑆𝑡
𝑆𝑡

+ 𝑞Δ𝑡 = 𝑟Δ𝑡 + 𝜎Δ𝑊𝑡.

As Δ𝑡 → 0we obtain the continuous-time analog of risk-neutral process followed by the
stock:

𝑑𝑆 = (𝑟 − 𝛿)𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊.
We conclude that 𝑆 follows a GBM under the risk-neutral measure with drift 𝑟 − 𝛿 and
volatility 𝜎.

Example 2. We can use the risk-neutral approach to compute the value 𝑉 of a long for-
ward contract with maturity 𝑇 and forward price 𝐾. The payoff of the long forward at
maturity is given by 𝑆𝑇 − 𝐾.
The value of the contract is then the expected payoff discounted at the risk-free rate, i.e.,

𝑉 = 𝑒−𝑟𝑇 E∗(𝑆𝑇 − 𝐾)
= 𝑒−𝑟𝑇(𝑆𝑒(𝑟−𝛿)𝑇 − 𝐾)
= 𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇 .

The value of the forward, in general, will change over time. The forward price 𝐹 is deter-
mined such that the value of the contract is zero when the contract is signed. Thus,

𝑉 = 𝑆𝑒−𝛿𝑇 − 𝐹𝑒−𝑟𝑇 = 0 ⇒ 𝐹 = 𝑆𝑒(𝑟−𝛿)𝑇 .

Remember that under the risk-neutral measure, the value of any asset is computed as
its expected payoff discounted at the risk-free rate. Therefore, the price of a European
call optionwithmaturity𝑇 and strike price𝐾written on the asset that pays a continuous
dividend yield 𝑞 is given by:

𝐶 = 𝑒−𝑟𝑇 E∗ ൫(𝑆𝑇 − 𝐾)𝟙{𝑆𝑇>𝐾}൯
= 𝑒−𝑟𝑇 E∗ ൫𝑆𝑇𝟙{𝑆𝑇>𝐾}൯ − 𝑒−𝑟𝑇 E ൫𝐾𝟙{𝑆𝑇>𝐾}൯
= 𝑆𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2),

where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 − 𝛿 + 1

2𝜎
2)𝑇

𝜎√𝑇
,

𝑑2 = 𝑑1 − 𝜎√𝑇.

4



40 60 80 100 120 140 160

20

40

60

S

Price

Call Price

Lower Bound

Call Payoff

Figure 1: The figure displays the Black-Scholes call premium 𝐶(𝑆) where 𝑟 = 0.05, 𝛿 =
0.08, 𝜎 = 0.45, 𝑇 = 1 and 𝐾 = 100. It also shows the call option payoff given
bymax(𝑆−𝐾, 0) and the lower bound for a Europeancall givenbymax(𝑆𝑒−𝛿𝑇−
𝐾𝑒−𝑟𝑇 , 0).
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Note that, even though the risk-free rate is positive, the time-value of deep ITM call op-
tions is now negative due to the positive dividend yield. Indeed, the lower bound asymp-
tote has a slope coefficient less than one, making the option price to cross the option’s
intrinsic value.

Consider now a European put option with the same characteristics as the previous call.
According to put-call parity, it must be the case that

𝐶 − 𝑃 = 𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇 .

Hence,
𝑃 = 𝐶 − (𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇)
= 𝑆𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2) − (𝑆𝑒−𝛿𝑇 − 𝐾𝑒−𝑟𝑇)
= 𝐾𝑒−𝑟𝑇(1 − Φ(𝑑2)) − 𝑆𝑒−𝛿𝑇(1 − Φ(𝑑1))
= 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆𝑒−𝛿𝑇Φ(−𝑑1).
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Figure 2: The figure displays the Black-Scholes put premium 𝑃(𝑆) where 𝑟 = 0.05, 𝛿 =
0.08, 𝜎 = 0.45, 𝑇 = 1 and 𝐾 = 100. It also shows the put option payoff given
bymax(𝐾−𝑆, 0) and the lower bound for a Europeanput givenbymax(𝐾𝑒−𝑟𝑇−
𝑆𝑒−𝛿𝑇 , 0).
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Example3. Astock that paysacontinuousdividendyieldof 8%currently trades for $100.
The instantaneous volatility of returns is 30% per year and the risk-free rate is 5% per
year, continuously compounded and constant for all maturities. Consider ATM call and
put options written on the stock with maturity 10 months. Then,

𝑑1 =
ln(100/100) + (0.05 − 0.08 + 0.5(0.30)2)(10/12)

0.30ඥ10/12
= 0.0456,

𝑑2 = 0.0456 − 0.30ඥ10/12 = −0.2282.

Therefore,Φ(𝑑1) = 0.5182 andΦ(𝑑2) = 0.4097, which implies that

𝐶 = 100𝑒−0.08(10/12)(0.5182) − 100𝑒−0.05(10/12)(0.4097) = $9.18,
𝑃 = 100𝑒−0.05(10/12)(1 − 0.4097) − 100𝑒−0.08(10/12)(1 − 0.5182) = $11.54.

For an asset that a pays a continuous dividend yield 𝛿, we have that for a European call
option:

𝜕𝐶
𝜕𝑆 = 𝑒−𝛿𝑇Φ(𝑑1).

Wecan see that if 𝛿 > 0, the number of shares required to hedge the call is lower than in
the case of a non-dividend paying asset. The shares that you buy to hedge the call grow
over time at the rate 𝛿, whichmeans that you need to buy less.

Similarly, for a European put option we have that

𝜕𝑃
𝜕𝑆 = −𝑒−𝛿𝑇Φ(−𝑑1).

Example 4. In the previous example, we found that Φ(𝑑1) = 0.5182 and Φ(𝑑2) =
0.4097. Hence,

𝜕𝐶
𝜕𝑆 = 𝑒−0.08(10/12)(0.5182) = 0.4848,
𝜕𝑃
𝜕𝑆 = −𝑒−0.08(10/12)(1 − 0.5182) = −0.4507.

This means that an OTC dealer who sells a call option needs to buy 0.4848 units of the
asset while borrowing

100𝑒−0.05(10/12)(0.4097) = $39.30
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at the risk-free rate. To hedge a put option, the dealer needs to short-sell 0.4507 units of
the asset and invest

100𝑒−0.05(10/12)(1 − 0.4097) = $56.62

in the money-market account.

Black-Scholes Model for a Stock that Pays a Dividend Yield

Consider a stock 𝑆 that pays a continuous dividend yield 𝑞 and that follows a GBM
under the risk-neutral measure:

𝑑𝑆 = (𝑟 − 𝛿)𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊

The price of European call and put options with strike price𝐾 and time-to-maturity
𝑇 are given by:

𝐶 = 𝑆𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2),
𝑃 = 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆𝑒−𝛿𝑇Φ(−𝑑1),

where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 − 𝛿 + 1

2𝜎
2)𝑇

𝜎√𝑇
,

𝑑2 = 𝑑1 − 𝜎√𝑇.
Furthermore, the delta of the call is given by 𝑒−𝛿𝑇Φ(𝑑1) whereas the delta of the
put is computed as−𝑒−𝛿𝑇Φ(−𝑑1).

Options on Indices

Options on Stock Indices

Most stock indices such as the S&P 500 (SPX) do not reinvest their dividends. Hence, to
replicate an option written on the index we can use a portfolio of stocks that mimics the
value of the index and that will pay a dividend yield over time. We will assume that the
replicating portfolio exactlymatches the composition of the index at any point in time so
that 𝑆𝑡 represents both the value of the index and of the tracking portfolio.
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SPX Options

SPX options are one of the most liquid option contracts in the world. They have the fol-
lowing characteristics:

• European style exercise
• Cash settled
• Each contract is written on 100 times the value of the index

Therearealsomini-SPX indexoptionswrittenover XSPwhich is an index10 timessmaller
than SPX. More information can be found at https://cdn.cboe.com/resources/spx/spx-
fact-sheet.pdf.

Example5. TheSPX index iscurrentlyat4,251, hasadividendyieldof1.33%per yearand
an instantaneous volatility of 17%per year. The risk-free rate is 3%per year, continuously
compoundedandconstant for allmaturities. Saywewant tocompute thepriceof anSPX
call option contract with maturity 3 months and strike 4,300. Then,

𝑑1 =
ln(4251/4300) + (0.03 − 0.0133 + 0.5(0.17)2)(3/12)

0.17ඥ3/12
= −0.0432,

𝑑2 = −0.0432 − 0.17ඥ10/12 = −0.1282.
Hence,Φ(𝑑1) = 0.4828 andΦ(𝑑2) = 0.4490, which implies that:

𝐶 = 4, 251𝑒−0.0133(3/12)(0.4828) − 4, 300𝑒−0.03(3/12)(0.4490) = $129.193.

Therefore, a standard SPX call option contract should cost $12,919.30, whereas a mini-
SPX call option contract should trade for $1,291.93.

Appendix

General PDE for Dividend-Paying Derivatives

Consider a derivative 𝐻 expiring at time 𝑇 and written on an asset that pays a dividend
yield 𝛿𝑆. Let us assume that the derivative itself also pays a dividend yield 𝛿𝐻. The risk-
neutral process for the stock is given by:

𝑑𝑆 = (𝑟 − 𝛿𝑆)𝑆𝑑𝑡 + 𝜎𝑆𝑆𝑑𝑊,

whereas the risk-neutral process of the derivative is given by

𝑑𝐻 = (𝑟 − 𝛿𝐻)𝐻𝑑𝑡 + 𝜎𝐻𝐻𝑑𝑊. (7)
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Moreover, according to Ito’s lemma, the risk-neutral process of the derivative must also
satisfy:

𝑑𝐻 = 𝜕𝐻
𝜕𝑆 𝑑𝑆 +

1
2
𝜕2𝐻
𝜕𝑆2 (𝑑𝑆)

2 + 𝜕𝐻
𝜕𝑡 𝑑𝑡

= ቆ12𝜎
2𝑆2𝜕

2𝐻
𝜕𝑆2 + (𝑟 − 𝛿𝑆)𝑆

𝜕𝐻
𝜕𝑆 + 𝜕𝐻

𝜕𝑡 ቇ𝑑𝑡 + 𝜎𝑆𝜕𝐻𝜕𝑆 𝑑𝑊.
(8)

Since the drift in (7) and (8) is the same, we have that

1
2𝜎

2𝑆2𝜕
2𝐻
𝜕𝑆2 + (𝑟 − 𝛿𝑆)𝑆

𝜕𝐻
𝜕𝑆 + 𝜕𝐻

𝜕𝑡 − (𝑟 − 𝛿𝐻)𝐻 = 0. (9)

In particular, the stock itself satisfies (9) if we take𝐻(𝑆) = 𝑆 and 𝛿𝐻 = 𝛿𝑆.

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin451.

Problem1. Calculate the value of a three-month at-the-money European call option on
a stock index when the index is at 250, the risk-free interest rate is 10% per annum, the
volatility of the index is 18% per annum, and the dividend yield on the index is 3% per
annum.

Problem 2. The S&P 100 index currently stands at 696 and has a volatility of 30% per
annum. The risk-free rate of interest is 7% per annum and the index provides a dividend
yield of 4% per annum. Calculate the value of a three-month European put with strike
price 700.
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