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Modeling Stock Prices in Continuous-Time

Stochastic Processes

A stochastic process describes the evolution of a random variable over time. In finance,
weusestochasticprocesses tomodel theevolutionof stockprices, interest rates, volatil-
ity, foreign exchange rates, and commodity prices. We distinguish between:

• Discrete-time processes: The values of the process {𝑆𝑛} are allowed to change only
at discrete time intervals, i.e., 𝑛 ∈ {0, 1, 2, … , 𝑁} or 𝑛 ∈ ℕ.

• Continuous-time processes: The stochastic process {𝑆𝑡} is defined for all 𝑡 ∈ [0, 𝑇].

Wewill now consider several stochastic processes commonly used to model the future
evolution of the price of an asset such as a stock. We start by understanding discrete-
timeprocesses and then extend the analysis to include continuous-timeprocesses. The
analysis is informal, as the theory of stochastic process in continuous time requires ad-
vancedmathematical concepts, which is beyond the scope of these notes.

It is essential to realize that a stochastic process for a stock price is trying to model all
possible histories between now and a specific time in the future. A sample path is one of
the many possible histories generated using the stochastic process.

Random Walks

We will now study one of the simplest yet most intriguing stochastic processes defined
in discrete time. A one-dimensional random walk {𝑋𝑛} is a stochastic process defined
as

𝑋0 = 𝑥0,
𝑋𝑛+1 = 𝑋𝑛 + 𝑒𝑛+1,
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where {𝑒𝑛}are independentand identicallydistributed (i.i.d.) randomvariablessuch that
E(𝑒𝑛) = 0 for all 𝑛 ≥ 1. Note that 𝑒𝑛 need not be normally distributed. For example, for
each 𝑛, the variable 𝑒𝑛 could take the values 1 and -1 with equal probability. A random
walk only requires that the shocks 𝑒𝑛 are independent.

Figure 1: The figure plots simulated paths for the random walk defined as 𝑋0 = 0, 𝑋𝑛+1 = 𝑋𝑛 +
𝑒𝑛+1, where {𝑒𝑛} is an i.i.d sequence taking the values 1 and−1with equal probability,
and 𝑛 ≤ 5000.

An essential property of a random walk is that its sample paths diverge as 𝑛 grows. In-
deed, we have

𝑋𝑛 = 𝑋𝑛−1 + 𝑒𝑛
= 𝑋𝑛−2 + 𝑒𝑛−1 + 𝑒𝑛

⋮
= 𝑋0 + 𝑒1 +⋯+ 𝑒𝑛−1 + 𝑒𝑛

= 𝑋0 +
𝑛

෍
𝑖=1

𝑒𝑖 .
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Denoting Var(𝑒𝑛) = 𝜎2, and since we have that {𝑒𝑛} are independent, we have

Var(𝑋𝑛) = 𝑛𝜎2.

Therefore, the variance of 𝑋𝑛 increases linearly with 𝑛 as 𝑛 → ∞.

Intuitively, this is saying that if we simulate many different sample paths for 𝑛 = 0,… ,𝑁
where 𝑁 is very large, we should expect to see some values of 𝑋𝑁 to be very high and
positive whereas others will be significantly negative.

Brownian Motion

A very useful randomwalk can be defined as follows:

𝑊𝑡+Δ𝑡 = 𝑊𝑡 + √Δ𝑡𝑒𝑡+Δ𝑡,

where𝑊0 = 0 and {𝑒𝑡} are i.i.d. such that 𝑒𝑡 ∼ 𝑁(0, 1). Note that here time increases
each step by Δ𝑡. Letting Δ𝑡 → 0, the resulting process {𝑊𝑡} for 𝑡 ∈ [0, 𝑇] is called a
Brownianmotion or Wiener process.

The Brownianmotion has the following properties:

• The sample paths are continuous.
• For 𝑠 < 𝑡, the increment𝑊𝑡 − 𝑊𝑠 ∼ 𝑁(0, 𝑡 − 𝑠), i.e. is normally distributed with
mean 0 and variance 𝑡 − 𝑠.

• Increments are independent of each other.
• In particular, note that𝑊𝑡 ∼ 𝑁(0, 𝑡) for 0 < 𝑡 ≤ 𝑇.
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Figure 2: The figure plots simulated paths for {𝑊𝑡}where 𝑡 ∈ [0, 10].

Geometric Brownian Motion

Nowwe turn our attention tomodeling stock prices {𝑆𝑡}. We need to be careful, though,
as stock prices cannot be negative. We also would like to allow the model to display a
certain drift 𝜇 and volatility 𝜎.

To achieve this, we model the percentage change of a stock price between 𝑡 and 𝑡 + Δ𝑡
as Δ𝑆𝑡

𝑆𝑡
= 𝜇Δ𝑡 + 𝜎Δ𝑊𝑡.

Note that the percentage change in price over an interval Δ𝑡 is normally distributed with
mean 𝜇Δ𝑡 and variance 𝜎2Δ𝑡. Letting Δ𝑡 → 0, the resulting process {𝑆𝑡} for 𝑡 ∈ [0, 𝑇] is
called a geometric Brownianmotion (GBM).
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Figure 3: Thefigureplots simulatedpaths for a geometricBrownianmotion {𝑆𝑡}where 𝑡 ∈ [0, 10],
𝑆0 = 100, 𝜇 = 0.20, and 𝜎 = 0.20. The dashed line denotes E (𝑆𝑡) = 𝑆0𝑒𝜇𝑡.

Stochastic Calculus

Oncewehavedefinedhow𝑆𝑡 behavesover time,wenow turnour attention tomodel how
a function of 𝑆𝑡 behaves over time. The reason why we are interested in this is because
wewant to findaway to price derivatives as a function of the relevant state variables. We
will see later thatwhen thestockprice isdrivenbyasingle sourceof uncertainty, then the
value of a call or put option depends only on the stock price itself and time-to-maturity,
i.e. the price of the derivative when the stock price is 𝑆 and the time-to-maturity is 𝑇 will
be of the form 𝐹(𝑆, 𝑇).

We will start studying how 𝑋𝑡 = 𝐹(𝑆𝑡) behaves over time and we will add later the time
dimension to the problem. In what follows we assume that 𝐹(⋅) is a smooth function
such that its first and second derivatives exist.
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Ito’s Lemma

Remember that theWiener process increment is defined

Δ𝑊𝑡 = 𝑊𝑡+Δ𝑡 −𝑊𝑡 = √Δ𝑡𝑒𝑡+Δ𝑡.

Consider a GBMprocess {𝑆𝑡} and a smooth function𝐹(⋅). A second order Taylor approx-
imation around 𝑆𝑡 implies

𝐹(𝑆𝑡 + Δ𝑆𝑡) ≈ 𝐹(𝑆𝑡) + 𝐹′(𝑆𝑡)(Δ𝑆𝑡) +
1
2𝐹

″(𝑆𝑡)(Δ𝑆𝑡)2.

Using the results derived in the appendix, we have that

(Δ𝑆𝑡)2 = (𝜇𝑆𝑡Δ𝑡 + 𝜎𝑆𝑡Δ𝑊𝑡)2

= (𝜇𝑆𝑡)2 (Δ𝑡)2ᇣᇤᇥ
≈0

+2𝜇𝜎(𝑆𝑡)2 (Δ𝑡)(Δ𝑊𝑡)ᇣᇧᇧᇤᇧᇧᇥ
≈0

+(𝜎𝑆𝑡)2 (Δ𝑊𝑡)2ᇣᇧᇤᇧᇥ
≈Δ𝑡

≈ 𝜎2𝑆2𝑡 Δ𝑡.

We can finally conclude that

Δ𝐹(𝑆𝑡) ≈ ቆ𝜇𝑆𝑡𝐹′(𝑆𝑡) +
1
2𝜎

2𝑆2𝑡 𝐹″(𝑆𝑡)ቇ Δ𝑡 + 𝜎𝑆𝑡𝐹′(𝑆𝑡)Δ𝑊𝑡.

The continuous-time analog of the previous analysis is as follows.

Ito’s Lemma for GBM

Consider a GBM process {𝑆𝑡} given by

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊, (1)
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and a twice-differentiable function 𝐹(𝑆). Then we have

𝑑𝐹 = ቆ𝜇𝑆𝐹′(𝑆) + 1
2𝜎

2𝑆2𝐹″(𝑆)ቇ 𝑑𝑡 + 𝜎𝑆𝐹′(𝑆)𝑑𝑊.

It is usually more convenient to use the box calculus when working with stochastic pro-
cesses defined through Brownianmotions.

Box Calculus

Consider the GBM process {𝑆𝑡} defined in (1). The box calculus rules for Ito pro-
cesses are:

(𝑑𝑡)2 = 0,
(𝑑𝑡)(𝑑𝑊) = (𝑑𝑊)(𝑑𝑡) = 0,

(𝑑𝑊)2 = 𝑑𝑡.
Furthermore, denote𝐹𝑆 = 𝐹′(𝑆)and𝐹𝑆𝑆 = 𝐹″(𝑆). Ito’sLemmacan thenbe restated
as

𝑑𝐹 = 𝐹𝑆𝑑𝑆 +
1
2𝐹𝑆𝑆(𝑑𝑆)

2,

where
(𝑑𝑆)2 = (𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊)2 = 𝜎2𝑆2𝑑𝑡.

Solving for GBM

Define 𝑋 = ln(𝑆), which implies 𝑆 = 𝑒𝑋. We have that 𝐹𝑆 = 1/𝑆 and 𝐹𝑆𝑆 = −1/𝑆2,
which implies

𝑑𝑋 = 𝐹𝑆𝑑𝑆 +
1
2𝐹𝑆𝑆(𝑑𝑆)

2

= 1
𝑆 (𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊) + 1

2 ቆ−
1
𝑆2ቇ𝜎

2𝑆2𝑑𝑡

= (𝜇𝑑𝑡 + 𝜎𝑑𝑊) − 1
2𝜎

2𝑑𝑡

= ቆ𝜇 − 1
2𝜎

2ቇ𝑑𝑡 + 𝜎𝑑𝑊.
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We can then solve for 𝑋𝑇:

𝑋𝑇 − 𝑋0 = න
𝑇

0
𝑑𝑋 = න

𝑇

0
ቆ𝜇 − 1

2𝜎
2ቇ𝑑𝑡 + න

𝑇

0
𝜎𝑑𝑊

= ቆ𝜇 − 1
2𝜎

2ቇ𝑇 + 𝜎𝑊𝑇 ,

and conclude that

𝑆𝑇 = 𝑆0 expቆቆ𝜇 −
1
2𝜎

2ቇ𝑇 + 𝜎𝑊𝑇ቇ . (2)

Properties of Stock Prices Following a GBM

Equation (2) can be rewritten as:

ln(𝑆𝑇) = ln(𝑆0) + ቆ𝜇 − 1
2𝜎

2ቇ𝑇 + 𝜎𝑊𝑇 .

We can conclude that ln(𝑆𝑇) ∼ 𝑁(𝑚, 𝑠2), where

𝑚 = ln(𝑆0) + ቆ𝜇 − 1
2𝜎

2ቇ𝑇,

𝑠 = 𝜎√𝑇.

In other words, 𝑆𝑇 is lognormally distributed with mean𝑚 and variance 𝑠2.

Example 1. Consider a stockwhose price at time 𝑡 is given by 𝑆𝑡 and that follows aGBM.
The expected return is 12% per year and the volatility is 25% per year. The current spot
price is $25. If we denote 𝑋𝑇 = ln(𝑆𝑇) and take 𝑇 = 0.5, we have that:

E(𝑋𝑇) = ln(25) + ൫0.12 − 0.5(0.25)2൯ (0.5) = 3.2633,
SD(𝑋𝑇) = 0.25√0.5 = 0.1768.

Hence, the 95% confidence interval for 𝑆𝑇 is given by:

[𝑒3.2633−1.96(0.1768), 𝑒3.2633+1.96(0.1768)] = [18.48, 36.96].
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Therefore, there is a 95% probability that the stock price in 6 months will lie between
$18.48 and $36.96.

Moments of the Stock Price

The fact that the stock price at time 𝑇 is log-normally distributed allows us to compute
themean and standard deviation of 𝑆𝑇.

Moments of the Stock Price

The expectation and standard deviation of 𝑆𝑇 are given by:

E(𝑆𝑇) = 𝑆0𝑒𝜇𝑇 ,

SD(𝑆𝑇) = 𝐸(𝑆𝑇)ඥ𝑒𝜎2𝑇 − 1.

Proof

Since ln(𝑆𝑇) ∼ 𝒩(𝑚, 𝑠2), we can compute itsmoments using the results derived earlier
so that

E(𝑆𝑇) = 𝑒𝑚+1
2𝑠

2 = 𝑒ln(𝑆0)+ቀ𝜇−
1
2𝜎

2ቁ𝑇+1
2𝜎

2𝑇 = 𝑒ln(𝑆0)𝑒𝜇𝑇 = 𝑆0𝑒𝜇𝑇 .

In this model, the expected stock price at any point in the future is just the current stock
price growing at the rate 𝜇 for 𝑇 years.

Therefore, the expected stock price grows at a rate 𝜇. The variance of 𝑆𝑇, however, is
large and increases exponentially with time.

Example 2. Consider a stockwhose price at time 𝑡 is given by 𝑆𝑡 and that follows aGBM.
The expected return is 12% per year and the volatility is 25% per year. The current spot
price is $25. The expected price and standard deviation 6months from now are:

E(𝑆𝑇) = 25𝑒0.12(0.5) = $26.55,

SD(𝑆𝑇) = 26.55ඥ𝑒0.252(0.5) − 1 = $4.73.
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A Generalized Form of Ito’s Lemma

Most derivatives not only depend on the underlying asset but also depend on time since
they have fixed expiration dates. The analysis we did before for Ito’s Lemma generalizes
easily to handle this case. Consider a non-dividend paying stock that follows a GBM:

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊,

and a smooth function 𝐹(𝑆, 𝑡). Ito’s Lemma in this case applies in the following form:

𝑑𝐹 = 𝐹𝑆𝑑𝑆 +
1
2𝐹𝑆𝑆(𝑑𝑆)

2 + 𝐹𝑡𝑑𝑡,

where (𝑑𝑆)2 = 𝜎2𝑆2𝑑𝑡.

Appendix

Some Intuition on Brownian Motion

Remember that we defined the Brownian motion or Wiener process as a random walk
driven by normally distributed shocks:

𝑊𝑡+Δ𝑡 = 𝑊𝑡 + √Δ𝑡𝑒𝑡+Δ𝑡,

where {𝑒𝑡} is an i.i.d. sequence of random variables distributed𝒩(0, 1).

Let’s start by splitting the interval [0, 𝑇] into 𝑛 intervals of length Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 .

t0 = 0 t1 t2 tn−1 tn = T

Wt0 Wt1 Wt2 . . . Wtn−2 Wtn−1

t
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Note that 𝑡𝑖 = 𝑖Δ𝑡 and 𝑇 = 𝑡𝑛 = 𝑛Δ𝑡. The Brownianmotion increments are then defined
as Δ𝑊𝑡𝑖 = 𝑊𝑡𝑖+1 −𝑊𝑡𝑖 .

The first question one might have is why using normally distributed increments. There
are two answers for that. First, a sum of normally distributed random variables is also
normal and in this case we have:

𝑊𝑇 −𝑊0 =
𝑛−1

෍
𝑖=0

Δ𝑊𝑡𝑖 =
𝑛−1

෍
𝑖=0

√Δ𝑡𝑒𝑡+Δ𝑡.

The variance of∑𝑛−1𝑖=0 √Δ𝑡𝑒𝑡+Δ𝑡 is given by∑
𝑛−1
𝑖=0 Δ𝑡 = 𝑛Δ𝑡 = 𝑇, which implies that𝑊𝑇 ∼

𝒩(0, 𝑇). So by using normally distributed increments we guarantee that the resulting
process for Brownianmotion is also normal.

Second, imagine that we use a different distribution for the i.i.d. increments while still
requiring E(𝑒𝑡) = 0 and Var(𝑒𝑡) = 1. For example, 𝑒𝑡 could take the values 1 and −1
with equal probability. Nevertheless, the central limit theorem guarantees that:

√𝑛ቌ
1
𝑛

𝑛−1

෍
𝑖=0

√Δ𝑡𝑒𝑡+Δ𝑡ቍ
𝑑−→ 𝒩(0, Δ𝑡).

In other words, even if we use a different distribution for the increments, as 𝑛 → ∞ we
have that𝑊𝑇 ∼ 𝒩(0, 𝑇). Therefore, there is no loss in generality in assuming normally
distributed increments for the Brownianmotion.

A second question that onemight have, and one of themost puzzling facts in stochastic
calculus in my opinion, is the fact that when we apply Ito’s lemma we use the fact that
(𝑑𝑊𝑡)2 = 𝑑𝑡. Clearly, (Δ𝑊𝑡)2 = Δ𝑡𝑒2𝑡 ≠ Δ𝑡 where 𝑒𝑡 ∼ 𝒩(0, 1). Indeed, if Δ𝑊𝑡 is
random, then (Δ𝑊𝑡)2 must also be random. However, we will see in a moment that it is
fine to say that (Δ𝑊𝑡)2 ≈ Δ𝑡 as Δ𝑡 → 0.
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Let’s start by computing the mean and variance of (Δ𝑊𝑡)2:

E ൣ(Δ𝑊𝑡)2൧ = Δ𝑡

Var ൣ(Δ𝑊𝑡)2൧ = E ൣ(Δ𝑊𝑡)4൧ − ൫E ൣ(Δ𝑊𝑡)2൧൯
2

= 3(Δ𝑡)2 − (Δ𝑡)2

= 2(Δ𝑡)2.

In computing the variance of (Δ𝑊𝑡)2weused the fact that if𝑋 ∼ 𝒩(0, 𝜎2), then E(𝑋4) =
3𝜎4. Since Δ𝑊𝑡 ∼ 𝒩(0, Δ𝑡), we have that E ൣ(Δ𝑊𝑡)4൧ = 3(Δ𝑡)2.

Consider now the following sum:

𝑆𝑛 =
𝑛−1

෍
𝑖=0

(Δ𝑊𝑡𝑖)2.

Clearly, 𝑆𝑛 is a sum of 𝑛 independent random variables so its variance is the sum of the
variance of each Δ𝑊𝑡 ∶

E(𝑆𝑛) = 𝑛Δ𝑡 = 𝑇

Var(𝑆𝑛) = 𝑛(2(Δ𝑡)2) = 2𝑇2
𝑛 .

Since lim𝑛→∞ Var(𝑆𝑛) = 0,we have that 𝑆𝑛 → 𝑇 as 𝑛 → ∞ in probability. Intuitively, the
previous result is really theweak-lawof largenumberssincewecan re-write it as 𝑆𝑛

𝑛 → Δ𝑡
as 𝑛 → ∞ in probability. However, when you apply the weak-law of large numbers to an
arbitrary sequence of i.i.d. random variables, you cannot say that you can approximate
each random variable by its mean just because its average converges to their mean. In
our case, since the variance of (Δ𝑊𝑡)2 is so small compared to its mean, we can safely
say that (Δ𝑊𝑡)2 behaves as if (Δ𝑊𝑡)2 = Δ𝑡 as 𝑛 → ∞. In other words, we have that
(Δ𝑊𝑡)2 ≈ Δ𝑡 for small Δ𝑡.
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We can apply the same analysis to study the behavior of (Δ𝑡)(Δ𝑊𝑡) as Δ𝑡 → 0. Since:

E [(Δ𝑡)(Δ𝑊𝑡)] = 0
Var [(Δ𝑡)(Δ𝑊𝑡)] = E ൣ((Δ𝑡)(Δ𝑊𝑡))2൧ − (E[(Δ𝑡)(Δ𝑊𝑡)])2

= (Δ𝑡)2 E[(Δ𝑊𝑡)2] − ((Δ𝑡) E[Δ𝑊𝑡])2

= (Δ𝑡)3.

Consider now the following sum:

𝐶𝑛 =
𝑛−1

෍
𝑖=0

(Δ𝑡)(Δ𝑊𝑡𝑖).

Themean and variance of 𝐶𝑛 are given by:

E(𝐶𝑛) = 0

Var(𝐶𝑛) =
𝑇3
𝑛2 .

Since lim𝑛→∞ Var(𝐶𝑛) = 0, we have that 𝐶𝑛 → 0 as 𝑛 → ∞ in probability, implying that
(Δ𝑡)(Δ𝑊𝑡) ≈ 0 for small Δ𝑡.

Computing Partial Expectations

Since ln(𝑆𝑇) ∼ 𝒩(𝑚, 𝑠2), we can use the result introduced earlier about partial expec-
tations to show the following property.
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Partial Expectations of the Stock Price

Consider a non-dividend paying stock that follows a GBM as defined in 1. Then we
have that:

E ൫𝑆𝑇𝟙{𝑆𝑇>𝐾}൯ = 𝑆0𝑒𝜇𝑇Φቌ
ln(𝑆0/𝐾) + (𝜇 + 1

2𝜎
2)𝑇

𝜎√𝑇
ቍ ,

E ൫𝐾𝟙{𝑆𝑇>𝐾}൯ = 𝐾Φቌ
ln(𝑆0/𝐾) + (𝜇 − 1

2𝜎
2)𝑇

𝜎√𝑇
ቍ .

Proof

E ൫𝑆𝑇𝟙{𝑆𝑇>𝐾}൯ = 𝑒𝑚+1
2𝑠

2
Φቆ𝑚 + 𝑠2 − ln(𝐾)

𝑠 ቇ

= 𝑆0𝑒𝜇𝑇Φቌ
ln(𝑆0/𝐾) + (𝜇 + 1

2𝜎
2)𝑇

𝜎√𝑇
ቍ ,

E ൫𝐾𝟙{𝑆𝑇>𝐾}൯ = 𝐾Φቆ𝑚 − ln(𝐾)
𝑠 ቇ

= 𝐾Φቌ
ln(𝑆0/𝐾) + (𝜇 − 1

2𝜎
2)𝑇

𝜎√𝑇
ቍ .

It turns out that these results are everythingweneed in order to derive theBlack-Scholes
pricing formulas!

Martingales

Amartingale is a process closely related to the randomwalk but slightlymore general. A
discrete-timemartingale {𝑍𝑛}𝑛≥0 is a stochastic process such that:

E (𝑍𝑛+1 | 𝑍0, 𝑍1, … , 𝑍𝑛) = 𝑍𝑛.
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Intuitively, the history of the process {𝑍𝑛} is irrelevant to forecast𝑍𝑛+1. The current value
of 𝑍𝑛 is the only thing that matters. A random walk is a martingale, but note that a mar-
tingale need not be a randomwalk.

For example, consider the process {𝑍𝑛}:

𝑍𝑛+1 = 𝑍𝑛𝜀𝑛+1,

where {𝜀𝑛} is an i.i.d. sequence such that E (𝜀𝑛) = 1 for all 𝑛 ≥ 0. It is a martingale
since:

E (𝑍𝑛+1 | 𝑍1, 𝑍2, … , 𝑍𝑛) = E (𝑍𝑛𝜀𝑛+1 | 𝑍𝑛) ,
= 𝑍𝑛 E (𝜀𝑛+1 | 𝑍𝑛) ,
= 𝑍𝑛.

Practice Problems

Solutions to all problems can be found at lorenzonaranjo.com/fin451.

Problem 1. Consider a stock whose price at time 𝑡 is given by 𝑆𝑡 and that follows a geo-
metric Brownian motion (GBM). The expected return is 18% per year and the volatility is
32% per year. The current spot price is $60.

a. Compute the expected price 9months from now.
b. Compute the mean and standard deviation of the log-spot price 9months from now.
c. Compute the 95% confidence interval of ln(𝑆𝑇) 9-months from now, and report the

corresponding values for 𝑆𝑇.

Problem2. Consider a stockwhose price at time 𝑡 is given by 𝑆𝑡 and that follows aGBM.
The expected return is 11% per year and the volatility is 27% per year. The current spot
price is $60.

a. Compute the expected price of 𝑆𝑡 1 year from now.
b. Compute the expected price of 1/𝑆𝑡 1 year from now.

15

https://lorenzonaranjo.com/fin451/


Problem3. Consider a stockwhose price at time 𝑡 is given by 𝑆𝑡 and that follows aGBM.
The expected return is 12% per year and the volatility is 35% per year. The current spot
price is $55. Let 𝑇 = 18months.

a. Compute E(𝑆𝑇).
b. Compute the mean and standard deviation of the log-spot price at 𝑇.
c. Find 𝐶 such that P(𝑆𝑇 ≤ 𝐶) = 0.01.

Problem4. Consider a stockwhoseprice at time𝑇 is givenby𝑆𝑇 and that followsaGBM,
i.e.,

ln(𝑆𝑇) ∼ 𝒩(ln(𝑆0) + (𝜇 − 0.5𝜎2)𝑇, 𝜎2𝑇).

The expected return is 12% per year and the volatility is 35% per year. The current spot
price is $100.

a. Compute the expected price in 2 years from now.
b. Compute the mean and standard deviation of the log-spot price in 2 years from now.
c. Compute the probability that the spot price is less than $100 in 2 years from now.
d. Compute the probability that the spot price is greater than $120 in 2 years from now.

Problem 5. Suppose that the stock price follows a geometric Brownian motion (GBM)
with drift 𝜇 and instantaneous volatility 𝜎, i.e.,

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊.

Show that 𝑌 = 𝑆𝛼 also follow a GBM and determine the drift and volatility as a function
of 𝜇, 𝜎, and 𝛼.

Problem 6. Let 𝑆 be the price of TESLA stock that follows a geometric Brownianmotion
such that

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊.

Your sales teamwould like to launch a new product called TESLAQuadro that tracks the
price of TESLA to the power 4. In other words, the value of this instrument is given by
𝑌 = 𝑆4.What is the process followed by 𝑌?
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Problem7. GoingUpCorp. has been gaining a lot of attention in themedia for its upside
potential. Financial experts agree that the stock price follows a geometric Brownianmo-
tion with drift (𝜇) equal to 20% per year and volatility of price returns (𝜎) of 73% per year.
The current stock price is $220. Compute the probability that the stock price is greater
than $233 in 10months from now.

Problem 8. You would like to invest in ZigZag Inc. but you are concerned that the stock
price might go down. You have been studying the dynamics of the stock price and con-
cluded that the stock follows a geometric Brownian motion with drift (𝜇) equal to 13%
per year and volatility of price returns (𝜎) of 58%per year. The current stock price is $118.
Compute the probability that the stock price is less than $98 in 12months from now.

Problem 9. You are analyzing BMX stock. You believe that it is accurate to model the
price evolution of the stock as a geometric Brownian motion. Using historical data, you
estimate that the drift (𝜇) is 12.0% per year and the volatility of stock returns (𝜎) is 39%
per year. The stock price just closed at $331. Compute the expected stock price in 9
months from now.

Optional Practice Problems

These problems are not required to study for the exam.

Problem 10. Suppose that the stock price follows a geometric Brownian motion (GBM)
with drift 𝜇 and instantaneous volatility 𝜎. Show that 𝑌 = 𝑆𝑒−𝜇𝑡 also follow a GBM and
determine the drift and volatility as a function of 𝜇 and 𝜎.

Problem 11. Suppose that the stock price follows a geometric Brownian motion (GBM)
with drift 𝑟 and instantaneous volatility 𝜎, where 𝑟 is the risk-free rate. Consider the fu-
tures price of 𝑆 at time 𝑡 and expiring at 𝑇, given by 𝑓 = 𝑆𝑒𝑟(𝑇−𝑡). Show that 𝑓 has zero
drift and hence is a martingale.
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Problem 12. Suppose that the stock price follows a geometric Brownian motion (GBM)
with drift 𝜇 = 10% and instantaneous volatility 𝜎 = 25%. Compute E(𝑆𝑇𝟙{𝑆𝑇>𝐾}) and
E(𝟙{𝑆𝑇>𝐾}) = P(𝑆𝑇 > 𝐾) if 𝑆0 = 100,𝐾 = 95 and 𝑇 = 2.
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