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Pricing Formulas

Black-Scholes Model for a Non-Dividend Paying Stock

Consider a non-dividend paying stock S that follows a GBM under the risk-

neutral measure:
dS = rSdt + o SdW

The price of European call and put options with strike price K and time-
to-maturity T are given by:

C=Sd(d) — Ke™"T d(dy)

P=Ke T &(—d) — S®(—d)

where

g In(S/K)+ (r+ 30T
L VT

d2 = d1 —O'ﬁ

\.
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The Replicating Portfolio Approach

@ Consider a derivative V written on a non-dividend paying stock S
with maturity T that pays F(S) at maturity.

@ The binomial model implies that the derivative can be replicated by
buying (or selling) «; units of the stock and (; units of a bond with
face value K and maturity T, respectively.

o If we call V the value of such replicating portfolio, we have that at
time t < T:

Vi = St + BBt

@ In order to replicate the derivative, we want to make sure that the
value of the portfolio at time t = T is equal to the payoff of the
derivative, that is:

V: = Hr

@ For example, for a European call option Hr = max(St — K, 0).

Derivative Securities Fall 2023 3/26



The Replicating Portfolio is Self-Financing

o At time t + At, the value of the replicating portfolio is:
Vitar = atStiat + BeBerat,
which implies that:
AV = a; AS; + B AB;.

@ The new composition of the portfolio at time t + At is chosen such
that:

Vitar = atSepnae + BeBryar = Qe aeStrar + BryatBeiat

which shows that the portfolio is self-financing, i.e., no new funds are
added or withdrawn from the portfolio.
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Replication in Continuous-Time

o As At — 0, we have that:

dV = adS + BdB
= adS + B(rBdt)
= adS + (BB)rdt

@ And since V =aS + B = B =V — a$, we can conclude that:

dV =r(V —aS)dt + adS
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Applying Ito’'s Lemma

@ We will assume for the moment that V is a smooth function of S and
t, thatis, V = V(S,t).

@ Then, Ito's Lemma implies that:

ov 10%V, s
dV = Z=dS + 2852(d$)+a—dt

= (1 252a—v - 8V> at+ 2V s

ov

08?0 oS

@ Therefore:

( S oo g )dt+85ds_r(v—a5)dt+ads
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The Delta of the Derivative

o First, the previous equation shows that replication works if and only if:

_ov
- 0S

@ This is a fundamental relationship in derivatives pricing.

«

o It states that the number of shares needed to replicate the derivative
is equal its sensitivity to the underlying asset.

o We call this quantity the delta (A) of the derivative.

@ Also, note that by choosing « equal to the delta of the derivative, it
really does not matter what drift we have for the stock.

@ We will use this fact in a moment to define the risk-neutral
probabilities in continuous-time.
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The Fundamental Partial Differential Equation (PDE)

@ Second, it must be the case that:

1 ,,0?V 9V A%
270 952t o —r<V 585)

@ Therefore: 5 2 5
ov ., - v W=
or T27° g5z TPps V=0

subject to V= Hr.
@ This is the celebrated Black-Scholes partial differential equation

(PDE) which allowed the authors to compute their influential formula
in 1973!

@ Solving PDEs, in general, is very hard so we will resort to a different
approach to price European call and put options.
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The Risk-Neutral Pricing Approach

@ The replicating approach is insensitive to the drift of the stock.

o As a matter of fact, the drift might even change based on whose
thinking about the asset.

@ Since the previous reasoning is silent about the drift and the type of
investor pricing the asset, we can assume in our reasoning that all
investors are risk-neutral.

@ Even if this is not true in real markets, such assumption would not
affect the logic of the replicating-portfolio argument.
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A Risk-Neutral World

@ In a world populated by risk-neutral investors, the price today of any
non-dividend paying asset is equal to the expected payoff at maturity
discounted at the risk-free rate, that is:

X =e "TE(X7)

@ Therefore, the drift of a non-dividend paying stock is the risk-free

rate:
dS = rSdt + o SdW

@ The same is true for all derivatives written on the stock:

ov 1 2V oV ov
d <r585+205 852+8t>dt+ 0585 d

=rV

@ We recover the same equation as before!
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Pricing a European Call Option

o Consider a European call option written on a non-dividend paying
stock with maturity T and strike price K.

@ The price of the call should then be:

C= e_'T E ((ST - K)H{ST>K})

—e'TE (STH{ST>K}) —eTE (KH{ST>K})
= Sd(dy) — Ke "7 d(dy)

where

g |n(5/K)—|—(r—|—%a2)T
b T
d2 = d1 —O‘ﬁ
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Call Premium vs. Spot Price

Price
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The plot displays the Black-Scholes call premium C(S) where r = 0.05, o = 0.45,
T =1 and K = 100. It also shows the call option payoff given by max(S — 100, 0)
and the lower bound for a European call given by max(S — 100e~0-05() 0).
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Reconciling Both Pricing Approaches

o It is tedious but straightforward to prove that:

_oc
-~ 0S

@ Also, we have that for a European call option:

«

= ®(d1) (1)
C=aS+pB=Sd(d)— Ke " &(dy)

which because of (1) implies that:

B=—d(d)
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Call Delta

Price

40 |

slope = ®(d1)
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The figure plots the Black-Scholes call premium C(S) where r = 0.05, o = 0.45,
T =1 and K = 100, and shows the tangent line at S = 100 whose slope
coefficient is the delta of the call given by ®(d}).
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Hedging the Call

@ Our analysis so far implies that to replicate a European call option,
we need to go long ®(d1) shares of stock and short ®(d») risk-free
bonds with face value K and maturity T.

@ The call is therefore a levered position in the underlying asset whose
delta is given by ®(dy).

e Since 0 < ®(d;) < 1, the delta of the call for a non-dividend paying
asset is bounded between 0 and 1.

@ As we saw in the previous slide, for a given spot price, the delta of the

call represents the slope coefficient of the tangency line at that point.
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Pricing a European Put Option

o Consider now a European put option with the same characteristics as
the previous call.

@ According to put-call parity, it must be the case that:
C—P=5S—Ke'T
@ Hence,

P=C—(S5—KeT)
= Sd(d) — Ke T d(dy) — (S— Ke ")
= Ke T (1 — &(dr)) — S(1 — (dch))
= Ke T &(—dy) — SP(—dy)
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Put Premium vs. Spot Price
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The plot displays the Black-Scholes put premium P(S) where r = 0.05, o = 0.45,
T =1 and K = 100. It also shows the put option payoff given by max(100 — S, 0)
and the lower bound for a European put given by max(100e~%%® — 5 0).
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Put Delta

Price
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The figure plots the Black-Scholes put premium P(S) where r = 0.05, o = 0.45,
T =1 and K = 100, and shows the tangent line at S = 100 whose slope
coefficient is the delta of the put given by — ®(—di) = ®(d1) — 1.
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Hedging the Put

@ We can use put-call parity to compute « for the put:

P 9(C-S+Ke )
T 95 a5

@ The fact that we also have P = aS + B also implies that:

= d(d)—1=—d(—dy) <0

(07

,3 = ¢(—d2) >0

@ Therefore, to replicate a European put option, we need to go short
®(—dy) shares of stock and long ®(—d,) risk-free bonds with face
value K and maturity T.
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Finishing In-The-Money

@ Remember that we showed that:
Pr(St > K) = E (Iys,5k ) = O(ch)
which also implies that:
Pr(StT<K)=1—-Pr(57 > K)=1—-9(db) = ¢(—d>)

@ Therefore, the risk-neutral probability that the call will expire
in-the-money is equal to ®(d>) whereas the risk-neutral probability
that the put finishes in-the-money is given by ®(—d>).
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Example 1

Consider a non-dividend paying stock that currently trades for $100. The
risk-free rate is 4% per year, continuously compounded and constant for all
maturities. The instantaneous volatility of returns is 25% per year. Consider
at-the-money call and put options written on the stock with maturity 9
months. Then,

_ In(100/100) + (0.04 + 0.5(0.25)2)(0.75)
B 0.25v/0.75
dr = 0.2468 — 0.251/0.75 = 0.0303

di = 0.2468
Therefore, ®(dy) = 0.5975 and ®(d») = 0.5121, which implies that:

C = 100(0.5975) — 100e 204075 (0.5121) = $10.05
P = 100e%04(075)(1 — 0.5121) — 100(1 — 0.5975) = $7.10
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The Impact of Volatility
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The figure shows the Black-Scholes call premium for different levels of volatility
where r = 0.05, T =1 and K = 100. The dashed line represents the lower bound
for the European call and the solid black line is the call payoff at maturity.
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Option Premium vs. Volatility

@ One of the most important determinants of option prices in the
Black-Scholes model is volatility.

@ We can show that for European call and put options:

oc 0P /

— =—=S5d(d)vVT >0 2

50 = Bo (VT (2)

@ Hence, both European call and put options increase in value as
volatility increases.

@ Moreover, this also implies that there is a one-on-one relationship
between option value and volatility, i.e., we can use volatility to quote
prices and vice-versa.

@ The volatility that matches the observed price of an option is called
the implied volatility.
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Implied Volatility

Example 2

Consider a non-dividend paying stock that currently trades for $100. The
risk-free rate is 5% per year, continuously compounded and constant for
all maturities. An ATM European call option written on the stock with
maturity 12 months trades for $16. We can check that o = 34.66% prices
the call correctly:

_In(100/100) + (0.05 + 0.5(0.3466)2)(1)
0.3466+/1
d> = 0.3358 — 0.3466v/1 = —0.0290

di = 0.3176

Therefore, ®(d;) = 0.6246 and ®(d,) = 0.4884, which implies that

C = 100(0.6246) — 100e°%5(1)(0.4884) = $16.00
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How Can We Compute the Implied Volatility?

@ Unfortunately, it is not possible to solve analytically for the implied
volatility.
o For a call option, for example, it involves solving numerically for o:

Co = C(Timp)

o Alternatively, we could tabulate the price of a call option for different
values of o (using the same parameters as the previous example):

o 005 010 0.15 0.20 0.25 0.30 0.35 0.40
C 528 680 859 1045 1234 1423 16.13 18.02

@ We could see that 0 = 35% gives a price of $16.13 for the call, which
is quite close to the true implied volatility of 34.66%.
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Implied Volatility for a Call Option

Call Price
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The figure shows the Black-Scholes call premium C(S, T; r, o, K) as a function of
o where S =100, r =0.05, T =1 and K = 100. We can see that for C = $16 the
corresponding volatility is approximatively 35%.
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