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Pricing Formulas

Black-Scholes Model for a Non-Dividend Paying Stock

Consider a non-dividend paying stock S that follows a GBM under the risk-
neutral measure:

dS = rSdt + σSdW

The price of European call and put options with strike price K and time-
to-maturity T are given by:

C = S Φ(d1) − Ke−rT Φ(d2)
P = Ke−rT Φ(−d2) − S Φ(−d1)

where

d1 =
ln(S/K ) + (r + 1

2 σ2)T
σ

√
T

d2 = d1 − σ
√

T
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The Replicating Portfolio Approach

Consider a derivative V written on a non-dividend paying stock S
with maturity T that pays F (S) at maturity.
The binomial model implies that the derivative can be replicated by
buying (or selling) αt units of the stock and βt units of a bond with
face value K and maturity T , respectively.
If we call V the value of such replicating portfolio, we have that at
time t < T :

Vt = αtSt + βtBt .

In order to replicate the derivative, we want to make sure that the
value of the portfolio at time t = T is equal to the payoff of the
derivative, that is:

VT = HT

For example, for a European call option HT = max(ST − K , 0).
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The Replicating Portfolio is Self-Financing

At time t + ∆t, the value of the replicating portfolio is:

Vt+∆t = αtSt+∆t + βtBt+∆t ,

which implies that:

∆Vt = αt∆St + βt∆Bt .

The new composition of the portfolio at time t + ∆t is chosen such
that:

Vt+∆t = αtSt+∆t + βtBt+∆t = αt+∆tSt+∆t + βt+∆tBt+∆t

which shows that the portfolio is self-financing, i.e., no new funds are
added or withdrawn from the portfolio.
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Replication in Continuous-Time

As ∆t → 0, we have that:

dV = αdS + βdB
= αdS + β(rBdt)
= αdS + (βB)rdt

And since V = αS + βB ⇒ βB = V − αS, we can conclude that:

dV = r(V − αS)dt + αdS

Lorenzo Naranjo Derivative Securities Fall 2023 5 / 26



Applying Ito’s Lemma

We will assume for the moment that V is a smooth function of S and
t, that is, V = V (S, t).
Then, Ito’s Lemma implies that:

dV = ∂V
∂S dS + 1

2
∂2V
∂S2 (dS)2 + ∂V

∂t dt

=
(

1
2σ2S2 ∂2V

∂S2 + ∂V
∂t

)
dt + ∂V

∂S dS

Therefore:(
1
2σ2S2 ∂2V

∂S2 + ∂V
∂t

)
dt + ∂V

∂S dS = r(V − αS)dt + αdS
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The Delta of the Derivative

First, the previous equation shows that replication works if and only if:

α = ∂V
∂S

This is a fundamental relationship in derivatives pricing.
It states that the number of shares needed to replicate the derivative
is equal its sensitivity to the underlying asset.
We call this quantity the delta (∆) of the derivative.
Also, note that by choosing α equal to the delta of the derivative, it
really does not matter what drift we have for the stock.
We will use this fact in a moment to define the risk-neutral
probabilities in continuous-time.
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The Fundamental Partial Differential Equation (PDE)

Second, it must be the case that:

1
2σ2S2 ∂2V

∂S2 + ∂V
∂t = r

(
V − S ∂V

∂S

)
Therefore:

∂V
∂t + 1

2σ2S2 ∂2V
∂S2 + rS ∂V

∂S − rV = 0

subject to VT = HT .
This is the celebrated Black-Scholes partial differential equation
(PDE) which allowed the authors to compute their influential formula
in 1973!
Solving PDEs, in general, is very hard so we will resort to a different
approach to price European call and put options.
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The Risk-Neutral Pricing Approach

The replicating approach is insensitive to the drift of the stock.
As a matter of fact, the drift might even change based on whose
thinking about the asset.
Since the previous reasoning is silent about the drift and the type of
investor pricing the asset, we can assume in our reasoning that all
investors are risk-neutral.
Even if this is not true in real markets, such assumption would not
affect the logic of the replicating-portfolio argument.
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A Risk-Neutral World

In a world populated by risk-neutral investors, the price today of any
non-dividend paying asset is equal to the expected payoff at maturity
discounted at the risk-free rate, that is:

X = e−rT E(XT )

Therefore, the drift of a non-dividend paying stock is the risk-free
rate:

dS = rSdt + σSdW

The same is true for all derivatives written on the stock:

dV =
(

rS ∂V
∂S + 1

2σ2S2 ∂2V
∂S2 + ∂V

∂t

)
︸ ︷︷ ︸

=rV

dt +
(

σS ∂V
∂S

)
dW

We recover the same equation as before!
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Pricing a European Call Option

Consider a European call option written on a non-dividend paying
stock with maturity T and strike price K .
The price of the call should then be:

C = e−rT E
(
(ST − K )1{ST >K}

)
= e−rT E

(
ST1{ST >K}

)
− e−rT E

(
K1{ST >K}

)
= S Φ(d1) − Ke−rT Φ(d2)

where

d1 =
ln(S/K ) + (r + 1

2σ2)T
σ

√
T

d2 = d1 − σ
√

T
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Call Premium vs. Spot Price
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The plot displays the Black-Scholes call premium C(S) where r = 0.05, σ = 0.45,
T = 1 and K = 100. It also shows the call option payoff given by max(S − 100, 0)
and the lower bound for a European call given by max(S − 100e−0.05(1), 0).
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Reconciling Both Pricing Approaches

It is tedious but straightforward to prove that:

α = ∂C
∂S = Φ(d1) (1)

Also, we have that for a European call option:

C = αS + βB = S Φ(d1) − Ke−rT Φ(d2)

which because of (1) implies that:

β = − Φ(d2)
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Call Delta
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The figure plots the Black-Scholes call premium C(S) where r = 0.05, σ = 0.45,
T = 1 and K = 100, and shows the tangent line at S = 100 whose slope
coefficient is the delta of the call given by Φ(d1).
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Hedging the Call

Our analysis so far implies that to replicate a European call option,
we need to go long Φ(d1) shares of stock and short Φ(d2) risk-free
bonds with face value K and maturity T .
The call is therefore a levered position in the underlying asset whose
delta is given by Φ(d1).

Since 0 < Φ(d1) < 1, the delta of the call for a non-dividend paying
asset is bounded between 0 and 1.

As we saw in the previous slide, for a given spot price, the delta of the
call represents the slope coefficient of the tangency line at that point.

Lorenzo Naranjo Derivative Securities Fall 2023 15 / 26



Pricing a European Put Option

Consider now a European put option with the same characteristics as
the previous call.
According to put-call parity, it must be the case that:

C − P = S0 − Ke−rT

Hence,

P = C − (S − Ke−rT )
= S Φ(d1) − Ke−rT Φ(d2) − (S − Ke−rT )
= Ke−rT (1 − Φ(d2)) − S(1 − Φ(d1))
= Ke−rT Φ(−d2) − S Φ(−d1)
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Put Premium vs. Spot Price
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The plot displays the Black-Scholes put premium P(S) where r = 0.05, σ = 0.45,
T = 1 and K = 100. It also shows the put option payoff given by max(100 − S, 0)
and the lower bound for a European put given by max(100e−0.05(1) − S, 0).
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Put Delta
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The figure plots the Black-Scholes put premium P(S) where r = 0.05, σ = 0.45,
T = 1 and K = 100, and shows the tangent line at S = 100 whose slope
coefficient is the delta of the put given by − Φ(−d1) = Φ(d1) − 1.
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Hedging the Put

We can use put-call parity to compute α for the put:

α = ∂P
∂S = ∂(C − S + Ke−rT )

∂S = Φ(d1) − 1 = − Φ(−d1) < 0

The fact that we also have P = αS + βB also implies that:

β = Φ(−d2) > 0

Therefore, to replicate a European put option, we need to go short
Φ(−d1) shares of stock and long Φ(−d2) risk-free bonds with face
value K and maturity T .
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Finishing In-The-Money

Remember that we showed that:

Pr(ST > K ) = E
(
1{ST >K}

)
= Φ(d2)

which also implies that:

Pr(ST < K ) = 1 − Pr(ST > K ) = 1 − Φ(d2) = Φ(−d2)

Therefore, the risk-neutral probability that the call will expire
in-the-money is equal to Φ(d2) whereas the risk-neutral probability
that the put finishes in-the-money is given by Φ(−d2).
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Example 1

Consider a non-dividend paying stock that currently trades for $100. The
risk-free rate is 4% per year, continuously compounded and constant for all
maturities. The instantaneous volatility of returns is 25% per year. Consider
at-the-money call and put options written on the stock with maturity 9
months. Then,

d1 = ln(100/100) + (0.04 + 0.5(0.25)2)(0.75)
0.25

√
0.75

= 0.2468

d2 = 0.2468 − 0.25
√

0.75 = 0.0303

Therefore, Φ(d1) = 0.5975 and Φ(d2) = 0.5121, which implies that:

C = 100(0.5975) − 100e−0.04(0.75)(0.5121) = $10.05
P = 100e−0.04(0.75)(1 − 0.5121) − 100(1 − 0.5975) = $7.10
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The Impact of Volatility
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The figure shows the Black-Scholes call premium for different levels of volatility
where r = 0.05, T = 1 and K = 100. The dashed line represents the lower bound
for the European call and the solid black line is the call payoff at maturity.
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Option Premium vs. Volatility

One of the most important determinants of option prices in the
Black-Scholes model is volatility.
We can show that for European call and put options:

∂C
∂σ

= ∂P
∂σ

= S Φ′(d1)
√

T > 0 (2)

Hence, both European call and put options increase in value as
volatility increases.
Moreover, this also implies that there is a one-on-one relationship
between option value and volatility, i.e., we can use volatility to quote
prices and vice-versa.
The volatility that matches the observed price of an option is called
the implied volatility.
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Implied Volatility

Example 2

Consider a non-dividend paying stock that currently trades for $100. The
risk-free rate is 5% per year, continuously compounded and constant for
all maturities. An ATM European call option written on the stock with
maturity 12 months trades for $16. We can check that σ = 34.66% prices
the call correctly:

d1 = ln(100/100) + (0.05 + 0.5(0.3466)2)(1)
0.3466

√
1

= 0.3176

d2 = 0.3358 − 0.3466
√

1 = −0.0290

Therefore, Φ(d1) = 0.6246 and Φ(d2) = 0.4884, which implies that

C = 100(0.6246) − 100e−0.05(1)(0.4884) = $16.00
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How Can We Compute the Implied Volatility?

Unfortunately, it is not possible to solve analytically for the implied
volatility.
For a call option, for example, it involves solving numerically for σ:

C0 = C(σimp)

Alternatively, we could tabulate the price of a call option for different
values of σ (using the same parameters as the previous example):

σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

C 5.28 6.80 8.59 10.45 12.34 14.23 16.13 18.02

We could see that σ = 35% gives a price of $16.13 for the call, which
is quite close to the true implied volatility of 34.66%.
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Implied Volatility for a Call Option
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The figure shows the Black-Scholes call premium C(S, T ; r , σ, K) as a function of
σ where S = 100, r = 0.05, T = 1 and K = 100. We can see that for C = $16 the
corresponding volatility is approximatively 35%.
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