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Stochastic Process

A stochastic process describes the evolution of a random variable over
time.
In finance we use stochastic processes to model the evolution of stock
prices, interest rates, volatility, foreign exchange rates, commodity
prices, etc.
We distinguish between:

Discrete-time processes: The values of the process {Sn} are allowed
to change only at discrete time intervals, i.e. n ∈ {0, 1, 2, . . . , N} or
n ∈ N.
Continuous-time processes: The stochastic process {St} is defined
for all t ∈ [0, T ].
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Random Walk

A random walk {Xn} is a stochastic process defined as:

X0 = x0

Xn+1 = Xn + en+1

where {en} are independent and identically distributed (i.i.d.) random
variables such that E(en) = 0 for all n ≥ 1.
Note that en need not be normally distributed.
For example, en could be such:

Pr(en = 1) = Pr(en = −1) = 0.5
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Random Walk Simulation

The figure plots simulated paths for the random walk Xn+1 = Xn + en+1
where X0 = 0, {en} is an i.i.d sequence taking the values 1 and −1 with
equal probability, and n ≤ 5000.
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Martingales

A discrete-time martingale {Zn}n≥0 is a stochastic process such that:

E (Zn+1 | Z1, Z2, . . . , Zn) = Zn

Note that a martingale need not be a random walk.
For example, consider the process {Zn}:

Zn+1 = Znεn+1

where {εn} is an i.i.d. sequence such that E (εn) = 1 for all n ≥ 1.
It is a martingale since:

E (Zn+1 | Z1, Z2, . . . , Zn) = E (Znεn+1 | Zn) = Zn E (εn+1 | Zn) = Zn.

Random walks are martingales, though.
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Wiener Process

A very useful random walk can be defined as follows:

Wt+∆t = Wt +
√

∆tet+∆t

where W0 = 0 and {et} are i.i.d. such that et ∼ N(0, 1).
Note that here time increases each step by ∆t.
Letting ∆t → 0, the resulting process {Wt} for t ∈ [0, T ] is called a
Wiener process or Brownian motion.
The Wiener process has the following properties:

The sample paths are continuous.
For s < t, the increment Wt − Ws ∼ N(0, t − s), i.e. is normally
distributed with mean 0 and variance t − s.
Increments are independent of each other.
In particular, note that Wt ∼ N(0, t) for 0 < t ≤ T .
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Wiener Process Simulation

The figure plots simulated paths for {Wt} where t ∈ [0, 10].
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Geometric Brownian Motion

Now we turn our attention to modeling stock prices {St}.
We need to be careful, though, as stock prices cannot be negative.
We also would like to allow the model to display a certain drift µ and
volatility σ.

To achieve this, we model the percentage change of a stock price
between t and t + ∆t as:

∆St
St

= µ∆t + σ∆Wt

Note that the percentage change in price over an interval ∆t is
normally distributed with mean µ∆t and variance σ2∆t.
This process is called a geometric Brownian motion (GBM).
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Geometric Brownian Motion Simulation

The figure plots simulated paths for a geometric Brownian motion {St}
where t ∈ [0, 10], S0 = 100, µ = 0.20, and σ = 0.20. The dashed line
denotes E (St) = S0eµt .
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Preliminary Results on Wiener Processes

The Wiener process increment can be approximated as:

∆Wt = Wt+∆t − Wt =
√

∆tet+∆t

If we define ξ = (∆Wt)2, we have that:

E(ξ) = ∆t
V(ξ) = E(ξ2) − (E(ξ))2 = 3(∆t)2 − (∆t)2 = 2(∆t)2 ≈ 0

Similarly, if we define ζ = (∆t)(∆Wt), we have that:

E(ζ) = 0
V(ζ) = E(ζ2) − (E(ζ))2 = (∆t)2 E(ξ) = (∆t)3 ≈ 0

Hence, (∆Wt)2 ≈ ∆t and (∆t)(∆Wt) ≈ 0 for small ∆t.
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Intuitive Ito’s Lemma

Consider a GBM process {St} and a smooth function f (·).
A second order Taylor approximation around St implies:

f (St + ∆St) ≈ f (St) + f ′(St)(∆St) + 1
2 f ′′(St)(∆St)2

Using the results derived before:

(∆St)2 = (µSt∆t + σSt∆Wt)2

= (µSt)2 (∆t)2︸ ︷︷ ︸
≈0

+2µσ(St)2 (∆t)(∆Wt)︸ ︷︷ ︸
≈0

+(σSt)2 (∆Wt)2︸ ︷︷ ︸
≈∆t

≈ σ2S2
t ∆t

We can finally conclude that:

∆f (St) ≈
(

µSt f ′(St) + 1
2σ2S2

t f ′′(St)
)

∆t + σSt f ′(St)∆Wt
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Ito’s Lemma

The continuous-time analog of the previous analysis is as follows.
As before, we consider a GBM process {St} given by:

dS = µSdt + σSdW

and a smooth function F (·).
Define a new process {Xt} as Xt = F (St) for all t ∈ [0, T ].
Ito’s lemma states that:

dF =
(

µSF ′(S) + 1
2σ2S2F ′′(S)

)
dt + σSF ′(S)dW
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Ito Calculus Rules

It is usually more convenient to use the following results when
working with stochastic processes defined through Brownian motions:

(dt)2 = 0
(dt)(dW ) = (dW )(dt) = 0

(dW )2 = dt

Ito’s Lemma can then be restated as:

dF = F ′(S)dS + 1
2F ′′(S)(dS)2

where
(dS)2 = (µSdt + σSdW )2 = σ2S2dt
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Solving for GBM

Define X = ln(S), which implies S = eX .
We have that F ′(S) = 1/S and F ′′(S) = −1/S2, which implies that:

dX =
(

µ − 1
2σ2

)
dt + σdW

We can then solve for XT :

XT − X0 =
∫ T

0
dX =

∫ T

0

(
µ − 1

2σ2
)

dt +
∫ T

0
σdW

=
(

µ − 1
2σ2

)
T + σWT

We can finally conclude that:

ST = S0 exp
((

µ − 1
2σ2

)
T + σWT

)
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Properties of Stock Prices Following a GBM

The previous result can be rewritten as:

ln(ST ) = ln(S0) +
(

µ − 1
2σ2

)
T + σWT

We can conclude that ln(ST ) ∼ N(m, s2), where:

m = ln(S0) +
(

µ − 1
2σ2

)
T

s = σ
√

T

In other words, ST is lognormally distributed with mean m and
variance s2.
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Calculating a Confidence Interval on the Stock Price

Example 1

Consider a stock whose price at time t is given by St and that follows a
GBM. The expected return is 12% per year and the volatility is 25% per
year. The current spot price is $25. If we denote XT = ln(ST ) and take
T = 0.5, we have that:

E(XT ) = ln(25) +
(
0.12 − 0.5(0.25)2) (0.5) = 3.2633

SD(XT ) = 0.25
√

0.5 = 0.1768

Hence, the 95% confidence interval for ST is given by:

[e3.2633−1.96(0.1768), e3.2633+1.96(0.1768)] = [18.48, 36.96]

Therefore, there is a 95% probability that the stock price in 6 months will
lie between $18.48 and $36.96.
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Calculating the Moments of the Stock Price
Some algebra reveals the expectation and standard deviation of ST :

E(ST ) = S0eµT

SD(ST ) = E (ST )
√

eσ2T − 1

Example 2

Consider a stock whose price at time t is given by St and that follows a
GBM. The expected return is 12% per year and the volatility is 25% per
year. The current spot price is $25. The expected price and standard
deviation 6 months from now are:

E(ST ) = 25e0.12(0.5) = $26.55

SD(ST ) = 26.55
√

e0.252(0.5) − 1 = $4.73
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Computing Partial Expectations

Since ln(ST ) ∼ N(m, s2). Then we have that:

E
(
ST1{ST >K}

)
= em+ 1

2 s2 Φ
(

m + s2 − ln(K )
s

)

= S0eµT Φ
(

ln(S0/K ) + (µ + 1
2σ2)T

σ
√

T

)

E
(
K1{ST >K}

)
= K Φ

(m − ln(K )
s

)
= K Φ

(
ln(S0/K ) + (µ − 1

2σ2)T
σ

√
T

)

It turns out that these results are everything we need in order to
derive the Black-Scholes pricing formulas!
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A Generalized Form of Ito’s Lemma

Most derivatives not only depend on the underlying asset but also
depend on time since they have fixed expiration dates.
The analysis we did before for Ito’s Lemma generalizes easily to
handle this case.
Consider a non-dividend paying stock that follows a GBM:

dS = µSdt + σSdW

and a smooth function F (S, t).
Ito’s Lemma in this case applies in the following form:

dF = ∂F
∂S dS + 1

2
∂2F
∂S2 (dS)2 + ∂F

∂t dt

where (dS)2 = σ2S2dt.
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