Modeling Stock Prices in Continuous-Time

Lorenzo Naranjo

WashU Olin Business School

- A stochastic process describes the evolution of a random variable over time.
- In finance we use stochastic processes to model the evolution of stock prices, interest rates, volatility, foreign exchange rates, commodity prices, etc.
- We distinguish between:
	- **Discrete-time processes**: The values of the process $\{S_n\}$ are allowed to change only at discrete time intervals, i.e. $n \in \{0, 1, 2, \ldots, N\}$ or $n \in \mathbb{N}$.
	- **Continuous-time processes**: The stochastic process $\{S_t\}$ is defined for all $t \in [0, T]$.

Random Walk

A random walk $\{X_n\}$ is a stochastic process defined as:

$$
X_0 = x_0
$$

$$
X_{n+1} = X_n + e_{n+1}
$$

where $\{e_n\}$ are independent and identically distributed (i.i.d.) random variables such that $E(e_n) = 0$ for all $n \ge 1$.

- Note that e_n need not be normally distributed.
- For example, e_n could be such:

$$
\Pr(e_n = 1) = \Pr(e_n = -1) = 0.5
$$

Random Walk Simulation

The figure plots simulated paths for the random walk $X_{n+1} = X_n + e_{n+1}$ where $X_0 = 0$, $\{e_n\}$ is an i.i.d sequence taking the values 1 and -1 with equal probability, and $n < 5000$.

Martingales

A discrete-time martingale $\left\{ Z_{n}\right\} _{n\geq0}$ is a stochastic process such that:

$$
E(Z_{n+1} | Z_1, Z_2, \ldots, Z_n) = Z_n
$$

- Note that a martingale need not be a random walk.
	- For example, consider the process $\{Z_n\}$:

$$
Z_{n+1}=Z_n\varepsilon_{n+1}
$$

where $\{\varepsilon_n\}$ is an i.i.d. sequence such that $E(\varepsilon_n) = 1$ for all $n \ge 1$. • It is a martingale since:

$$
E(Z_{n+1} | Z_1, Z_2, \ldots, Z_n) = E(Z_n \varepsilon_{n+1} | Z_n) = Z_n E(\varepsilon_{n+1} | Z_n) = Z_n.
$$

• Random walks are martingales, though.

Wiener Process

A very useful random walk can be defined as follows:

$$
W_{t+\Delta t} = W_t + \sqrt{\Delta t} e_{t+\Delta t}
$$

where $W_0 = 0$ and $\{e_t\}$ are i.i.d. such that $e_t \sim N(0, 1)$.

- Note that here time increases each step by Δt .
- Letting $\Delta t \to 0$, the resulting process $\{W_t\}$ for $t \in [0, T]$ is called a Wiener process or Brownian motion.
- The Wiener process has the following properties:
	- The sample paths are continuous.
	- For $s < t$, the increment $W_t W_s \sim N(0, t s)$, i.e. is normally distributed with mean 0 and variance $t - s$.
	- Increments are independent of each other.
	- In particular, note that W^t ∼ N(0*,*t) for 0 *<* t ≤ T.

Wiener Process Simulation

The figure plots simulated paths for $\{W_t\}$ where $t \in [0, 10]$.

Geometric Brownian Motion

• Now we turn our attention to modeling stock prices $\{S_t\}$.

- We need to be careful, though, as stock prices cannot be negative.
- \bullet We also would like to allow the model to display a certain drift μ and volatility *σ*.
- To achieve this, we model the percentage change of a stock price between t and $t + \Delta t$ as:

$$
\frac{\Delta S_t}{S_t} = \mu \Delta t + \sigma \Delta W_t
$$

- Note that the percentage change in price over an interval Δt is normally distributed with mean $\mu \Delta t$ and variance $\sigma^2 \Delta t.$
- This process is called a geometric Brownian motion (GBM).

Geometric Brownian Motion Simulation

The figure plots simulated paths for a geometric Brownian motion $\{S_t\}$ where $t \in [0, 10]$, $S_0 = 100$, $\mu = 0.20$, and $\sigma = 0.20$. The dashed line denotes $\mathsf{E}\left(\mathcal{S}_t \right) = \mathcal{S}_0 e^{\mu t}$.

Preliminary Results on Wiener Processes

The Wiener process increment can be approximated as:

$$
\Delta W_t = W_{t+\Delta t} - W_t = \sqrt{\Delta t} e_{t+\Delta t}
$$

If we define $\xi = (\Delta W_t)^2$, we have that:

$$
E(\xi) = \Delta t
$$

$$
V(\xi) = E(\xi^2) - (E(\xi))^2 = 3(\Delta t)^2 - (\Delta t)^2 = 2(\Delta t)^2 \approx 0
$$

Similarly, if we define $\zeta = (\Delta t)(\Delta W_t)$, we have that:

$$
E(\zeta) = 0
$$

\n $V(\zeta) = E(\zeta^2) - (E(\zeta))^2 = (\Delta t)^2 E(\xi) = (\Delta t)^3 \approx 0$

Hence, $(\Delta W_t)^2 \approx \Delta t$ and $(\Delta t)(\Delta W_t) \approx 0$ for small Δt .

Intuitive Ito's Lemma

- Consider a GBM process $\{S_t\}$ and a smooth function $f(\cdot)$.
- A second order Taylor approximation around S_t implies:

$$
f(S_t + \Delta S_t) \approx f(S_t) + f'(S_t)(\Delta S_t) + \frac{1}{2}f''(S_t)(\Delta S_t)^2
$$

• Using the results derived before:

$$
(\Delta S_t)^2 = (\mu S_t \Delta t + \sigma S_t \Delta W_t)^2
$$

= $(\mu S_t)^2 (\Delta t)^2 + 2\mu \sigma (S_t)^2 (\Delta t) (\Delta W_t) + (\sigma S_t)^2 (\Delta W_t)^2$
 $\approx \sigma^2 S_t^2 \Delta t$

We can finally conclude that:

$$
\Delta f(S_t) \approx \left(\mu S_t f'(S_t) + \frac{1}{2}\sigma^2 S_t^2 f''(S_t)\right) \Delta t + \sigma S_t f'(S_t) \Delta W_t
$$

Ito's Lemma

- The continuous-time analog of the previous analysis is as follows.
- As before, we consider a GBM process $\{S_t\}$ given by:

$$
dS = \mu S dt + \sigma S dW
$$

and a smooth function $F(\cdot)$.

- Define a new process $\{X_t\}$ as $X_t = F(S_t)$ for all $t \in [0, T]$.
- \bullet Ito's lemma states that:

$$
dF = \left(\mu SF'(S) + \frac{1}{2}\sigma^2 S^2 F''(S)\right) dt + \sigma SF'(S)dW
$$

Ito Calculus Rules

• It is usually more convenient to use the following results when working with stochastic processes defined through Brownian motions:

$$
(dt)2 = 0
$$

\n
$$
(dt)(dW) = (dW)(dt) = 0
$$

\n
$$
(dW)2 = dt
$$

o Ito's Lemma can then be restated as:

$$
dF = F'(S)dS + \frac{1}{2}F''(S)(dS)^2
$$

where

$$
(dS)^2 = (\mu S dt + \sigma S dW)^2 = \sigma^2 S^2 dt
$$

Solving for GBM

- Define $X = \mathsf{In}(S)$, which implies $S = e^X.$
- We have that $F'(S)=1/S$ and $F''(S)=-1/S^2,$ which implies that:

$$
dX = \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dW
$$

• We can then solve for X_T :

$$
X_T - X_0 = \int_0^T dX = \int_0^T \left(\mu - \frac{1}{2}\sigma^2\right) dt + \int_0^T \sigma dW
$$

= $\left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma W_T$

We can finally conclude that:

$$
S_T = S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma W_T\right)
$$

Properties of Stock Prices Following a GBM

• The previous result can be rewritten as:

$$
\ln(S_T) = \ln(S_0) + \left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma W_T
$$

We can conclude that ln $({\sf S}_{\cal T})\sim{\sf N}(m,s^2)$, where:

$$
m = \ln(S_0) + \left(\mu - \frac{1}{2}\sigma^2\right)T
$$

$$
s = \sigma\sqrt{T}
$$

• In other words, S_T is lognormally distributed with mean m and variance s^2 .

Calculating a Confidence Interval on the Stock Price

Example 1

Consider a stock whose price at time t is given by S_t and that follows a GBM. The expected return is 12% per year and the volatility is 25% per year. The current spot price is \$25. If we denote $X_T = \ln(S_T)$ and take $T = 0.5$, we have that:

$$
E(X_T) = \ln(25) + (0.12 - 0.5(0.25)^2) (0.5) = 3.2633
$$

SD(X_T) = 0.25 $\sqrt{0.5}$ = 0.1768

Hence, the 95% confidence interval for S_T is given by:

$$
[e^{3.2633-1.96(0.1768)}, e^{3.2633+1.96(0.1768)}] = [18.48, 36.96]
$$

Therefore, there is a 95% probability that the stock price in 6 months will lie between \$18.48 and \$36.96.

Calculating the Moments of the Stock Price

• Some algebra reveals the expectation and standard deviation of S_T :

$$
E(S_T) = S_0 e^{\mu T}
$$

$$
SD(S_T) = E(S_T) \sqrt{e^{\sigma^2 T} - 1}
$$

Example 2

Consider a stock whose price at time t is given by S_t and that follows a GBM. The expected return is 12% per year and the volatility is 25% per year. The current spot price is \$25. The expected price and standard deviation 6 months from now are:

$$
E(S_T) = 25e^{0.12(0.5)} = $26.55
$$

SD(S_T) = 26.55 $\sqrt{e^{0.25^2(0.5)} - 1} = 4.73

Computing Partial Expectations

Since $\ln(S_{\mathcal{T}}) \sim \mathsf{N}(m, s^2)$. Then we have that:

$$
E(S_T 1\!\!1_{\{S_T>K\}}) = e^{m + \frac{1}{2}s^2} \Phi\left(\frac{m + s^2 - \ln(K)}{s}\right)
$$

$$
= S_0 e^{\mu T} \Phi\left(\frac{\ln(S_0/K) + (\mu + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right)
$$

$$
E(K 1\!\!1_{\{S_T>K\}}) = K \Phi\left(\frac{m - \ln(K)}{s}\right)
$$

$$
= K \Phi\left(\frac{\ln(S_0/K) + (\mu - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right)
$$

• It turns out that these results are everything we need in order to derive the Black-Scholes pricing formulas!

A Generalized Form of Ito's Lemma

- Most derivatives not only depend on the underlying asset but also depend on time since they have fixed expiration dates.
- The analysis we did before for Ito's Lemma generalizes easily to handle this case.
- Consider a non-dividend paying stock that follows a GBM:

$$
dS = \mu S dt + \sigma S dW
$$

and a smooth function F(S*,*t).

• Ito's Lemma in this case applies in the following form:

$$
dF = \frac{\partial F}{\partial S} dS + \frac{1}{2} \frac{\partial^2 F}{\partial S^2} (dS)^2 + \frac{\partial F}{\partial t} dt
$$

where $(dS)^2 = \sigma^2 S^2 dt$.